plotsr: visualizing structural similarities and rearrangements between multiple genomes

Abstract Summary Third-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the comparison of multiple assembled genomes of individual species and demands new tools for visualizing their structural properties. Here, we pr...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 38; no. 10; pp. 2922 - 2926
Main Authors Goel, Manish, Schneeberger, Korbinian
Format Journal Article
LanguageEnglish
Published England Oxford University Press 13.05.2022
Online AccessGet full text

Cover

Loading…
Abstract Abstract Summary Third-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the comparison of multiple assembled genomes of individual species and demands new tools for visualizing their structural properties. Here, we present plotsr, an efficient tool to visualize structural similarities and rearrangements between genomes. It can be used to compare genomes on chromosome level or to zoom in on any selected region. In addition, plotsr can augment the visualization with regional identifiers (e.g. genes or genomic markers) or histogram tracks for continuous features (e.g. GC content or polymorphism density). Availability and implementation plotsr is implemented as a python package and uses the standard matplotlib library for plotting. It is freely available under the MIT license at GitHub (https://github.com/schneebergerlab/plotsr) and bioconda (https://anaconda.org/bioconda/plotsr). Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Third-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the comparison of multiple assembled genomes of individual species and demands new tools for visualizing their structural properties. Here, we present plotsr, an efficient tool to visualize structural similarities and rearrangements between genomes. It can be used to compare genomes on chromosome level or to zoom in on any selected region. In addition, plotsr can augment the visualization with regional identifiers (e.g. genes or genomic markers) or histogram tracks for continuous features (e.g. GC content or polymorphism density).SUMMARYThird-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the comparison of multiple assembled genomes of individual species and demands new tools for visualizing their structural properties. Here, we present plotsr, an efficient tool to visualize structural similarities and rearrangements between genomes. It can be used to compare genomes on chromosome level or to zoom in on any selected region. In addition, plotsr can augment the visualization with regional identifiers (e.g. genes or genomic markers) or histogram tracks for continuous features (e.g. GC content or polymorphism density).plotsr is implemented as a python package and uses the standard matplotlib library for plotting. It is freely available under the MIT license at GitHub (https://github.com/schneebergerlab/plotsr) and bioconda (https://anaconda.org/bioconda/plotsr).AVAILABILITY AND IMPLEMENTATIONplotsr is implemented as a python package and uses the standard matplotlib library for plotting. It is freely available under the MIT license at GitHub (https://github.com/schneebergerlab/plotsr) and bioconda (https://anaconda.org/bioconda/plotsr).Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Third-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the comparison of multiple assembled genomes of individual species and demands new tools for visualising their structural properties. Here we present plotsr, an efficient tool to visualize structural similarities and rearrangements between genomes. It can be used to compare genomes on chromosome level or to zoom in on any selected region. In addition, plotsr can augment the visualisation with regional identifiers (e.g. genes or genomic markers) or histogram tracks for continuous features (e.g. GC content or polymorphism density). plotsr is implemented as a python package and uses the standard matplotlib library for plotting. It is freely available under the MIT license at GitHub (https://github.com/schneebergerlab/plotsr) and bioconda (https://anaconda.org/bioconda/plotsr). Supplementary data are available at Bioinformatics online.
Abstract Summary Third-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the comparison of multiple assembled genomes of individual species and demands new tools for visualizing their structural properties. Here, we present plotsr, an efficient tool to visualize structural similarities and rearrangements between genomes. It can be used to compare genomes on chromosome level or to zoom in on any selected region. In addition, plotsr can augment the visualization with regional identifiers (e.g. genes or genomic markers) or histogram tracks for continuous features (e.g. GC content or polymorphism density). Availability and implementation plotsr is implemented as a python package and uses the standard matplotlib library for plotting. It is freely available under the MIT license at GitHub (https://github.com/schneebergerlab/plotsr) and bioconda (https://anaconda.org/bioconda/plotsr). Supplementary information Supplementary data are available at Bioinformatics online.
Author Schneeberger, Korbinian
Goel, Manish
Author_xml – sequence: 1
  givenname: Manish
  orcidid: 0000-0002-6087-6990
  surname: Goel
  fullname: Goel, Manish
– sequence: 2
  givenname: Korbinian
  surname: Schneeberger
  fullname: Schneeberger, Korbinian
  email: k.schneeberger@lmu.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35426899$$D View this record in MEDLINE/PubMed
BookMark eNqNkLtuFTEQQC0URJ6_EG2ZZol9_bqOaKIoPKRINCBKa9aevTLy2ovtTQRfz6J7U4QGqpninBnpnJKjlBMScsnoW0YNvx5CDmnMZYIWXL0eGjhm1CtywoSi_YZKc7TuXOlebCk_Jqe1fqdUMiHEG3LMpdiorTEn5Nscc6vlpnsMdYEYfoW062ori2tLgdjVMIUIJbSAtYPku4JQCqQdTpha7QZsT4ipm5bYwhyx22HKE9Zz8nqEWPHiMM_I1_f3X-4-9g-fP3y6u33oHd9uVK9H7_yoGXg9bvU4cCGp0YPXHgQYQfWopDIMhPDSSck5cBBODgDeUYmCn5Gr_d255B8L1manUB3GCAnzUu1GKaHNesOs6OUBXYYJvZ1LmKD8tM8xVuDdHnAl11pwtC60tW9OrUCIllH7p7192d4e2q-6-kt__vBPke3FvMz_6_wGLvelhA
CitedBy_id crossref_primary_10_1016_j_cub_2024_07_022
crossref_primary_10_1186_s13007_023_01010_4
crossref_primary_10_1093_hr_uhad241
crossref_primary_10_1038_s41588_024_01760_4
crossref_primary_10_1093_gigascience_giad067
crossref_primary_10_1093_g3journal_jkae080
crossref_primary_10_1093_genetics_iyac132
crossref_primary_10_1186_s13059_023_03160_z
crossref_primary_10_1093_g3journal_jkad157
crossref_primary_10_1111_jipb_13653
crossref_primary_10_1093_molbev_msae191
crossref_primary_10_1101_gr_279292_124
crossref_primary_10_1038_s41467_025_56817_7
crossref_primary_10_3390_ijms25094851
crossref_primary_10_1111_nph_20463
crossref_primary_10_3389_fmicb_2023_1129319
crossref_primary_10_1186_s12864_024_10914_x
crossref_primary_10_1093_gigascience_giac090
crossref_primary_10_1016_j_cub_2024_07_010
crossref_primary_10_1038_s41597_024_03431_9
crossref_primary_10_1093_gigascience_giad051
crossref_primary_10_1093_g3journal_jkae195
crossref_primary_10_1038_s41588_025_02115_3
crossref_primary_10_1080_20002297_2023_2277271
crossref_primary_10_1038_s41598_023_39088_4
crossref_primary_10_1093_gigascience_giae029
crossref_primary_10_1093_g3journal_jkad026
crossref_primary_10_1270_jsbbs_23077
crossref_primary_10_1186_s12915_023_01772_2
crossref_primary_10_1038_s41597_024_03861_5
crossref_primary_10_1038_s41467_024_54428_2
crossref_primary_10_1016_j_indcrop_2024_118243
crossref_primary_10_1111_tpj_17158
crossref_primary_10_1093_bioinformatics_btad121
crossref_primary_10_1038_s41588_024_02069_y
crossref_primary_10_48130_tp_0024_0029
crossref_primary_10_1111_jse_13007
crossref_primary_10_1093_g3journal_jkae021
crossref_primary_10_1093_gbe_evae227
crossref_primary_10_1093_hr_uhaf001
crossref_primary_10_1038_s41597_023_02171_6
crossref_primary_10_1007_s00122_023_04286_1
crossref_primary_10_12688_wellcomeopenres_18854_1
crossref_primary_10_12688_wellcomeopenres_18854_2
crossref_primary_10_1002_tpg2_20441
crossref_primary_10_1038_s41588_024_01967_5
crossref_primary_10_3389_fpls_2023_1248780
crossref_primary_10_1111_tpj_16874
crossref_primary_10_1038_s41477_024_01625_y
crossref_primary_10_1002_tpg2_20319
crossref_primary_10_1073_pnas_2413587122
crossref_primary_10_1186_s12864_024_10264_8
crossref_primary_10_1093_gigascience_giad033
crossref_primary_10_1016_j_xplc_2024_101075
crossref_primary_10_1093_gbe_evaf047
crossref_primary_10_1093_hr_uhad215
crossref_primary_10_1016_j_xplc_2024_100942
crossref_primary_10_1093_g3journal_jkae135
crossref_primary_10_1038_s41597_024_04200_4
crossref_primary_10_1038_s41597_024_03361_6
crossref_primary_10_1093_g3journal_jkac308
crossref_primary_10_3390_microorganisms11071729
crossref_primary_10_1016_j_cj_2023_10_003
crossref_primary_10_1093_hmg_ddaf035
crossref_primary_10_1093_bioinformatics_btae477
crossref_primary_10_1038_s41598_024_67270_9
crossref_primary_10_17660_ActaHortic_2023_1379_16
crossref_primary_10_1093_gbe_evae169
crossref_primary_10_1101_gr_277550_122
crossref_primary_10_3389_fpls_2023_1212967
crossref_primary_10_1093_gigascience_giae116
crossref_primary_10_1038_s41477_024_01713_z
crossref_primary_10_1038_s41597_025_04737_y
crossref_primary_10_1186_s13059_024_03337_0
crossref_primary_10_1111_tpj_16454
crossref_primary_10_1134_S0026261723600477
crossref_primary_10_1038_s41597_024_03437_3
crossref_primary_10_1101_gr_278127_123
crossref_primary_10_1161_HYPERTENSIONAHA_122_20140
crossref_primary_10_1093_gigascience_giae064
crossref_primary_10_1038_s41597_025_04523_w
crossref_primary_10_1016_j_hpj_2025_01_007
crossref_primary_10_1111_pbi_14055
crossref_primary_10_1186_s12915_023_01556_8
crossref_primary_10_1111_nph_20252
crossref_primary_10_12688_wellcomeopenres_18445_2
crossref_primary_10_12688_wellcomeopenres_18445_1
crossref_primary_10_1093_dnares_dsae032
crossref_primary_10_1093_hr_uhae071
crossref_primary_10_1038_s41477_024_01755_3
crossref_primary_10_1093_hr_uhad260
crossref_primary_10_1186_s12864_025_11246_0
crossref_primary_10_1186_s12915_023_01643_w
crossref_primary_10_1093_g3journal_jkac321
crossref_primary_10_1093_hr_uhad268
crossref_primary_10_1186_s12864_023_09514_y
crossref_primary_10_1093_g3journal_jkad253
crossref_primary_10_1093_hr_uhae119
crossref_primary_10_1038_s42003_024_06660_1
crossref_primary_10_1186_s12864_024_10810_4
crossref_primary_10_48130_forres_0024_0016
crossref_primary_10_1093_g3journal_jkae217
crossref_primary_10_1038_s41477_024_01858_x
crossref_primary_10_1093_plphys_kiae258
crossref_primary_10_3389_fpls_2023_1290913
Cites_doi 10.1186/s13059-020-02235-5
10.1093/molbev/msab212
10.1038/s41586-021-03420-7
10.1038/nbt.4277
10.1146/annurev-genom-090314-050032
10.1093/gigascience/giab017
10.1093/bioinformatics/btaa115
10.1093/molbev/msab308
10.1093/bioinformatics/btw369
10.1111/tpj.15690
10.1038/nature03001
10.1038/s41477-019-0487-8
10.1093/bioinformatics/btaa680
10.1093/bioinformatics/btz597
10.1093/bioinformatics/bty191
10.1038/s41586-021-03451-0
10.1186/s13059-019-1911-0
10.1186/gb-2004-5-2-r12
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/btac196
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 2926
ExternalDocumentID 35426899
10_1093_bioinformatics_btac196
10.1093/bioinformatics/btac196
Genre Journal Article
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABEJV
ABGNP
ABJNI
ABNGD
ABNKS
ABPTD
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACPQN
ACUFI
ACUKT
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROZ
RXO
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
AAYXX
ABEUO
ABIXL
ABPQP
ABQLI
ACIWK
ACPRK
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KOP
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
ADRIX
AFXEN
BCRHZ
M49
NPM
ROX
7X8
ID FETCH-LOGICAL-c3826-7fdcdf71ad7f87fb345097bd7da4a9407f65691a44d5c5533a3a4c5baadc05e43
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 10:55:23 EDT 2025
Wed Feb 19 02:24:21 EST 2025
Thu Apr 24 23:06:37 EDT 2025
Tue Jul 01 02:33:58 EDT 2025
Wed Apr 02 07:04:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3826-7fdcdf71ad7f87fb345097bd7da4a9407f65691a44d5c5533a3a4c5baadc05e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6087-6990
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btac196
PMID 35426899
PQID 2664795699
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2664795699
pubmed_primary_35426899
crossref_citationtrail_10_1093_bioinformatics_btac196
crossref_primary_10_1093_bioinformatics_btac196
oup_primary_10_1093_bioinformatics_btac196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220513
PublicationDateYYYYMMDD 2022-05-13
PublicationDate_xml – month: 05
  year: 2022
  text: 20220513
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jarvis (2023020109125751000_btac196-B6) 2022
Kurtz (2023020109125751000_btac196-B8) 2004; 5
Nattestad (2023020109125751000_btac196-B14) 2016; 32
Abdellah (2023020109125751000_btac196-B1) 2004; 431
Beyer (2023020109125751000_btac196-B2) 2019; 35
Li (2023020109125751000_btac196-B9) 2021; 38
Zhang (2023020109125751000_btac196-B23) 2021; 39
O’Donnell (2023020109125751000_btac196-B16) 2020; 36
Nurk (2023020109125751000_btac196-B15) 2021
Guarracino (2023020109125751000_btac196-B5) 2021
van Rengs (2023020109125751000_btac196-B17) 2022
Logsdon (2023020109125751000_btac196-B12) 2021; 593
Goel (2023020109125751000_btac196-B4) 2019; 20
Tang (2023020109125751000_btac196-B20) 2015
Campoy (2023020109125751000_btac196-B3) 2020; 21
Nattestad (2023020109125751000_btac196-B13) 2021; 37
Lindtke (2023020109125751000_btac196-B11) 2020
Li (2023020109125751000_btac196-B10) 2018; 34
Koren (2023020109125751000_btac196-B7) 2018; 36
Zamyatin (2023020109125751000_btac196-B21) 2021; 10
Simpson (2023020109125751000_btac196-B19) 2015; 16
Rhie (2023020109125751000_btac196-B18) 2021; 592
Zhang (2023020109125751000_btac196-B22) 2019; 58
References_xml – start-page: 44
  volume-title: Science
  year: 2021
  ident: 2023020109125751000_btac196-B15
– year: 2021
  ident: 2023020109125751000_btac196-B5
– year: 2015
  ident: 2023020109125751000_btac196-B20
– volume: 21
  start-page: 20
  year: 2020
  ident: 2023020109125751000_btac196-B3
  article-title: Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02235-5
– year: 2022
  ident: 2023020109125751000_btac196-B6
– volume: 38
  start-page: 4867
  year: 2021
  ident: 2023020109125751000_btac196-B9
  article-title: Two reference-quality sea snake genomes reveal their divergent evolution of adaptive traits and venom systems
  publication-title: Mol. Biol. Evol
  doi: 10.1093/molbev/msab212
– volume: 593
  start-page: 101
  year: 2021
  ident: 2023020109125751000_btac196-B12
  article-title: The structure, function and evolution of a complete human chromosome 8
  publication-title: Nature
  doi: 10.1038/s41586-021-03420-7
– volume: 36
  start-page: 1174
  year: 2018
  ident: 2023020109125751000_btac196-B7
  article-title: De novo assembly of haplotype-resolved genomes with trio binning
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.4277
– volume: 16
  start-page: 153
  year: 2015
  ident: 2023020109125751000_btac196-B19
  article-title: The theory and practice of genome sequence assembly
  publication-title: Annu. Rev. Genomics Hum. Genet
  doi: 10.1146/annurev-genom-090314-050032
– volume: 10
  start-page: 1
  year: 2021
  ident: 2023020109125751000_btac196-B21
  article-title: Chromosome-level genome assemblies of the malaria vectors Anopheles coluzzii and Anopheles arabiensis
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab017
– volume: 36
  start-page: 3242
  year: 2020
  ident: 2023020109125751000_btac196-B16
  article-title: MUM&Co: accurate detection of all SV types through whole-genome alignment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa115
– volume: 39
  start-page: msab308
  year: 2021
  ident: 2023020109125751000_btac196-B23
  article-title: Dead-end hybridization in walnut trees revealed by large-scale genomic sequence data
  publication-title: Mol. Biol. Evol
  doi: 10.1093/molbev/msab308
– volume: 32
  start-page: 3021
  year: 2016
  ident: 2023020109125751000_btac196-B14
  article-title: Assemblytics: a web analytics tool for the detection of variants from an assembly
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw369
– year: 2022
  ident: 2023020109125751000_btac196-B17
  article-title: A chromosome scale tomato genome built from complementary PacBio and Nanopore sequences alone reveals extensive linkage drag during breeding
  publication-title: Plant J
  doi: 10.1111/tpj.15690
– volume: 431
  start-page: 931
  year: 2004
  ident: 2023020109125751000_btac196-B1
  article-title: Finishing the euchromatic sequence of the human genome
  publication-title: Nature
  doi: 10.1038/nature03001
– volume: 58
  start-page: 833
  year: 2019
  ident: 2023020109125751000_btac196-B22
  article-title: Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0487-8
– volume: 37
  start-page: 413
  year: 2021
  ident: 2023020109125751000_btac196-B13
  article-title: Ribbon: intuitive visualization for complex genomic variation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa680
– volume: 35
  start-page: 5318
  year: 2019
  ident: 2023020109125751000_btac196-B2
  article-title: Sequence tube maps: making graph genomes intuitive to commuters
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz597
– volume: 34
  start-page: 3094
  year: 2018
  ident: 2023020109125751000_btac196-B10
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– year: 2020
  ident: 2023020109125751000_btac196-B11
– volume: 592
  start-page: 737
  year: 2021
  ident: 2023020109125751000_btac196-B18
  article-title: Towards complete and error-free genome assemblies of all vertebrate species
  publication-title: Nature
  doi: 10.1038/s41586-021-03451-0
– volume: 20
  start-page: 277
  year: 2019
  ident: 2023020109125751000_btac196-B4
  article-title: SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1911-0
– volume: 5
  start-page: R12
  year: 2004
  ident: 2023020109125751000_btac196-B8
  article-title: Versatile and open software for comparing large genomes
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-2-r12
SSID ssj0051444
ssj0005056
Score 2.6751082
Snippet Abstract Summary Third-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the...
Third-generation genome sequencing technologies have led to a sharp increase in the number of high-quality genome assemblies. This allows the comparison of...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2922
Title plotsr: visualizing structural similarities and rearrangements between multiple genomes
URI https://www.ncbi.nlm.nih.gov/pubmed/35426899
https://www.proquest.com/docview/2664795699
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jIPgi3p03IvgklLUmaVrfRBxDUF823Fs5uRQKWyvrFPTXe9LLZIqoj4UmhXxpz3ea832HkHOpOTha71kRRx4HUJ4CwbwgsCpmKWio_uneP4TDMb-biEmHBK0W5usRfsz6KisaE1FnXNxXC9C4bfCri5HYueWPHiefRR2-s4apL5AK8LqnrbP2jnzWCoR_nHMlNq3o3b7Rzir8DDbJRsMb6XUN9Bbp2HybrNWdJN92yNPztFiU8yv6mpVOJvmOEYnW3rDOV4OW2SzDHLayT6WQGzp3NbpOWFBJ3GhTrkXb-kLqvFtnttwl48Ht6GboNT0TPM0wU_BkarRJZQBGppFMFePICKQy0gCCgtlbigQuDoBzI7RArgcMuBYKwGhfWM72SDcvcntAaBhaiLUyliOY4LPIcBVykCowkeYR6xHRrlaiG0Nx19dimtQH2yxZXeWkWeUe6S_HPdeWGr-OuEAw_nzzWYtZgq-KO_-A3BYvZYJchEvMB-O4R_ZrMJdzMoFUBXPPw_886oisXzo1hDNzZceki6jaE-QoC3VabcsPFvTsGQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=plotsr%3A+Visualising+structural+similarities+and+rearrangements+between+multiple+genomes&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Goel%2C+Manish&rft.au=Schneeberger%2C+Korbinian&rft.date=2022-05-13&rft.eissn=1367-4811&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac196&rft_id=info%3Apmid%2F35426899&rft.externalDocID=35426899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon