Tc-99m-HL91 imaging in the early detection of neuronal injury in a neonatal rat model of hypoxic ischemia
Hypoxic-ischemic insult in newborns results in progressive neuronal loss. For neuroprotective therapy to be effective, it is important to identify high-risk neonates soon after birth. 99mTc-labeled imaging agent, Tc-99m-HL91, developed as a putative hypoxic reagent, has been reported to demonstrate...
Saved in:
Published in | Critical care medicine Vol. 40; no. 6; p. 1930 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2012
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Hypoxic-ischemic insult in newborns results in progressive neuronal loss. For neuroprotective therapy to be effective, it is important to identify high-risk neonates soon after birth. 99mTc-labeled imaging agent, Tc-99m-HL91, developed as a putative hypoxic reagent, has been reported to demonstrate increased uptake in ischemic myocardium. We hypothesized that Tc-99m-HL91 is sensitive for the early identification of hypoxic-ischemic injury in neonatal rat brains.
Laboratory investigation.
University research laboratory.
Sprague-Dawley rat pups.
Postnatal day-7 pups were divided into four groups: hypoxic-ischemia, hypoxia-only, ischemia-only, and controls. In the early (2 hrs), intermediate (20 hrs), and late (44 hrs) reoxygenation phases, Tc-99m-HL91 in vivo and ex vivo imaging and quantitative autoradiography were performed. Regions of interest were drawn to calculate the contrast ratio of Tc-99m-HL91 uptake between the ipsilateral and contralateral hemispheres. Pathology, cerebral blood flow, and blood-brain barrier damage were determined.
After hypoxic-ischemia, there were very few pyknotic neurons in the early phase, many pyknotic neurons in the intermediate phase, and extensive neuronal loss in the late phase postreoxygenation. Blood-brain barrier damage occurred in the early phase, progressed in the intermediate phase, and became extensive in the late phase. The hypoxia-only and ischemia-only pups showed no neuronal or blood-brain barrier damage and had higher cerebral blood flow postreoxygenation compared with the hypoxia-ischemia pups. Regions of interest analysis of in vivo and ex vivo images and autoradiography revealed significantly higher Tc-99m-HL91 contrast ratio at early and intermediate phases, not late phase of hypoxic-ischemic group. Hypoxic-ischemia group had significantly higher contrast ratio values in the early and intermediate phases than the hypoxia-only and ischemia-only groups. A contrast ratio value of 0.15 in the early phase on postnatal day 7 had a sensitivity of 0.95 and specificity of 0.89 in detecting significant hypoxic-ischemic lesions on postnatal day 21.
Tc-99m-HL91 uptake is sensitive for the early detection of hypoxic-ischemic injury in neonatal brains. |
---|---|
ISSN: | 1530-0293 |
DOI: | 10.1097/CCM.0b013e31824e1883 |