Simulation of the Impact of Process Variation on the Optimized 10-nm FinFET
We examined the influence of process variation on device performance of the optimized 10-nm FinFET device using a fully self-consistent quantum-mechanical transport simulator based on the contact block reduction method. Sensitivity of the on-current, leakage currents, threshold voltage, drain-induce...
Saved in:
Published in | IEEE transactions on electron devices Vol. 55; no. 8; pp. 2134 - 2141 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.08.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We examined the influence of process variation on device performance of the optimized 10-nm FinFET device using a fully self-consistent quantum-mechanical transport simulator based on the contact block reduction method. Sensitivity of the on-current, leakage currents, threshold voltage, drain-induced barrier lowering, and subthreshold swing for the optimized FinFET to process variation at room temperature have been investigated. Subthreshold source-to-drain leakage current is found to be the most sensitive parameter to process variation. Gate leakage current has been analyzed for both poly-Si gates and gates with the work function of 4.35 eV. For poly-Si gates, the gate leakage is found to influence the subthreshold swing below or at a gate oxide thickness of 1 nm. Device performance has also been analyzed at ldquoslow processrdquo corner to estimate the worst case degradation in performance matrices of the considered nano-FinFET. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2008.925937 |