A New Task Graph Model for Mapping Message Passing Applications

The exploitation of parallelism in a message passing platform implies a previous modeling phase of the parallel application as a task graph, which properly reflects its temporal behavior. In this paper, we analyze the classical task graph models of the literature and their drawbacks when modeling me...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 18; no. 12; pp. 1740 - 1753
Main Authors Roig, C., Ripoll, A., Guirado, F.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The exploitation of parallelism in a message passing platform implies a previous modeling phase of the parallel application as a task graph, which properly reflects its temporal behavior. In this paper, we analyze the classical task graph models of the literature and their drawbacks when modeling message passing programs with an arbitrary task structure. We define a new task graph model called temporal task interaction graph (TTIG) that integrates the classical models used in the literature. The TTIG allows us to explicitly capture the ability of concurrency of adjacent tasks for applications where adjacent tasks can communicate at any point inside them. A mapping strategy is developed from this model, which minimizes the expected execution time by properly exploiting task parallelism. The effectiveness of this approach has been proved in different experimentation scopes for a wide range of message passing applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2007.1117