Wnt signaling in development and tissue homeostasis
The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper...
Saved in:
Published in | Development (Cambridge) Vol. 145; no. 11; p. dev146589 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis. |
---|---|
AbstractList | The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis.The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis. The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis.Summary: An overview of Wnt-β-catenin signaling highlighting its key functions during development and adult tissue homeostasis. The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis. |
Author | Angers, Stephane Steinhart, Zachary |
Author_xml | – sequence: 1 givenname: Zachary surname: Steinhart fullname: Steinhart, Zachary organization: University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada – sequence: 2 givenname: Stephane orcidid: 0000-0001-7241-9044 surname: Angers fullname: Angers, Stephane organization: University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29884654$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0MtKxDAUBuAgI85FNz6AFNyI0DHXNlnK4A0G3CguS9qejhnaZGxSYd7e6IwuBldZnO8_h_xTNLLOAkLnBM8J5fSmhs854ZmQ6ghNCM_zVBGqRmiClcApUYqM0dT7NcaYZXl-gsZUSRkDfILYmw2JNyurW2NXibFJ3Aat23QQB9rWSTDeD5C8uw6cD9obf4qOG916ONu_M_R6f_eyeEyXzw9Pi9tlWjFJQgpENlCReElrXANhJTQUNBWsLEVD64wSBVlNtM6yijFRZkJgKLmUMS4bzWboard307uPAXwoOuMraFttwQ2-oFhQiTkWPNLLA7p2Qx8_9aM4lnt1sVdD2UFdbHrT6X5b_NYRwfUOVL3zvofmjxBcfHddxHaKXdcR4wNcmaCDcTb02rT_Rb4A_Y5_9Q |
CitedBy_id | crossref_primary_10_1080_14728222_2021_1992386 crossref_primary_10_1016_j_ijbiomac_2024_129634 crossref_primary_10_1038_s12276_024_01381_1 crossref_primary_10_1093_biolre_ioz030 crossref_primary_10_1126_sciadv_aaw3896 crossref_primary_10_14814_phy2_15232 crossref_primary_10_3389_fendo_2020_00631 crossref_primary_10_1186_s12935_023_03113_3 crossref_primary_10_1038_s41598_022_25315_x crossref_primary_10_1038_s41467_022_35487_9 crossref_primary_10_1242_jcs_244186 crossref_primary_10_3390_cancers13215532 crossref_primary_10_1016_j_ecoenv_2024_115948 crossref_primary_10_3389_fphys_2021_730196 crossref_primary_10_1097_BOR_0000000000000841 crossref_primary_10_3389_fcell_2021_740783 crossref_primary_10_3892_etm_2019_7991 crossref_primary_10_1038_s41467_025_57165_2 crossref_primary_10_1016_j_gene_2024_148967 crossref_primary_10_3724_abbs_2023032 crossref_primary_10_3389_fcell_2020_00734 crossref_primary_10_1007_s00109_019_01870_1 crossref_primary_10_1242_dev_194407 crossref_primary_10_1038_s41368_024_00279_y crossref_primary_10_1038_s41419_021_03786_6 crossref_primary_10_1111_gtc_13147 crossref_primary_10_1111_febs_17336 crossref_primary_10_3389_fimmu_2025_1553093 crossref_primary_10_3390_ijms25147846 crossref_primary_10_1093_jmcb_mjac038 crossref_primary_10_18632_aging_203778 crossref_primary_10_1016_j_jgr_2022_11_002 crossref_primary_10_1016_j_semcdb_2021_11_020 crossref_primary_10_3389_fcell_2023_1174579 crossref_primary_10_3389_fnmol_2020_00117 crossref_primary_10_3390_biomedicines11102675 crossref_primary_10_1002_mgg3_2067 crossref_primary_10_1186_s40478_019_0871_7 crossref_primary_10_1038_s41467_021_24004_z crossref_primary_10_1002_cbin_11797 crossref_primary_10_1007_s10142_022_00849_5 crossref_primary_10_3390_ijms21165940 crossref_primary_10_1016_j_celrep_2020_107973 crossref_primary_10_1016_j_toxrep_2020_08_020 crossref_primary_10_3390_ijms23158676 crossref_primary_10_1080_10408398_2021_1879001 crossref_primary_10_3389_fcell_2018_00167 crossref_primary_10_1016_j_anireprosci_2023_107395 crossref_primary_10_3390_ijms21239107 crossref_primary_10_12677_ACM_2023_133431 crossref_primary_10_1186_s12915_024_01873_6 crossref_primary_10_3389_fcell_2021_750382 crossref_primary_10_1124_mol_119_117986 crossref_primary_10_1172_JCI171222 crossref_primary_10_1002_fft2_439 crossref_primary_10_3389_fendo_2021_664557 crossref_primary_10_1055_s_0041_1740348 crossref_primary_10_1111_jre_13199 crossref_primary_10_2139_ssrn_3989797 crossref_primary_10_3390_md21120622 crossref_primary_10_1002_1878_0261_13520 crossref_primary_10_2108_zs230050 crossref_primary_10_1177_1535370220901683 crossref_primary_10_1093_sleepadvances_zpad045 crossref_primary_10_4103_1673_5374_276320 crossref_primary_10_1016_j_semcdb_2021_10_001 crossref_primary_10_1002_JLB_3RI0721_385R crossref_primary_10_1002_fsn3_3405 crossref_primary_10_1002_gcc_22700 crossref_primary_10_1007_s12308_024_00597_4 crossref_primary_10_1038_s41598_021_89060_3 crossref_primary_10_1007_s00439_024_02659_0 crossref_primary_10_3389_fcell_2020_618652 crossref_primary_10_1038_s41578_018_0066_z crossref_primary_10_3390_ijms252313151 crossref_primary_10_1007_s13659_024_00443_1 crossref_primary_10_1371_journal_pbio_3001581 crossref_primary_10_1007_s00216_023_04746_z crossref_primary_10_1016_j_biopha_2023_115824 crossref_primary_10_3390_cells14030178 crossref_primary_10_3390_cancers13112734 crossref_primary_10_1002_cam4_70530 crossref_primary_10_3390_ijms21239203 crossref_primary_10_3390_ijms24087616 crossref_primary_10_1016_j_jbc_2023_105248 crossref_primary_10_1016_j_xcrm_2024_101659 crossref_primary_10_4251_wjgo_v11_i8_589 crossref_primary_10_1038_s41416_021_01352_7 crossref_primary_10_3389_fphar_2022_1073392 crossref_primary_10_1016_j_celrep_2022_110442 crossref_primary_10_1016_j_gendis_2022_07_011 crossref_primary_10_3389_fphar_2019_01110 crossref_primary_10_1016_j_isci_2025_111832 crossref_primary_10_1080_00071668_2021_1963676 crossref_primary_10_1242_jcs_259405 crossref_primary_10_3390_life11090988 crossref_primary_10_1242_dev_201352 crossref_primary_10_3390_ijms222212105 crossref_primary_10_1007_s00018_022_04295_1 crossref_primary_10_1038_s41580_024_00823_y crossref_primary_10_3390_ijms21113790 crossref_primary_10_3390_ijms232012210 crossref_primary_10_1186_s12943_022_01616_7 crossref_primary_10_1016_j_celrep_2022_110461 crossref_primary_10_1080_21655979_2023_2251696 crossref_primary_10_1093_hmg_ddac026 crossref_primary_10_3390_ijms22052430 crossref_primary_10_3390_biom12020309 crossref_primary_10_3390_diagnostics14192161 crossref_primary_10_1007_s10555_020_09887_6 crossref_primary_10_1158_2767_9764_CRC_22_0027 crossref_primary_10_3390_cancers15072088 crossref_primary_10_1016_j_jbc_2022_101986 crossref_primary_10_3390_biom14080919 crossref_primary_10_3390_cells13090775 crossref_primary_10_3390_cells13070608 crossref_primary_10_3389_fcell_2022_944673 crossref_primary_10_3390_ijms23147500 crossref_primary_10_7554_eLife_93908_3 crossref_primary_10_1016_j_advms_2022_01_001 crossref_primary_10_1073_pnas_2104944118 crossref_primary_10_4155_ppa_2022_0037 crossref_primary_10_1038_s41418_020_00632_8 crossref_primary_10_1186_s43166_021_00088_9 crossref_primary_10_3390_curroncol28040230 crossref_primary_10_5812_gct_110381 crossref_primary_10_1002_bdr2_2244 crossref_primary_10_7554_eLife_46134 crossref_primary_10_1098_rsob_180158 crossref_primary_10_3390_biomedicines10051131 crossref_primary_10_3389_fonc_2022_871788 crossref_primary_10_1038_s41467_024_46023_2 crossref_primary_10_7717_peerj_15123 crossref_primary_10_1146_annurev_biophys_052118_115534 crossref_primary_10_1016_j_tibs_2021_07_008 crossref_primary_10_1038_s41392_024_02070_1 crossref_primary_10_1038_s41467_023_44338_0 crossref_primary_10_1038_s41418_020_0575_3 crossref_primary_10_3389_fendo_2023_1122351 crossref_primary_10_1158_1541_7786_MCR_24_0880 crossref_primary_10_1186_s12885_022_09898_2 crossref_primary_10_3389_fbioe_2022_981062 crossref_primary_10_1016_j_meatsci_2023_109116 crossref_primary_10_3389_fmicb_2020_01998 crossref_primary_10_1186_s12964_020_00544_7 crossref_primary_10_1242_dev_175604 crossref_primary_10_3390_ijms231911434 crossref_primary_10_3389_fonc_2020_603702 crossref_primary_10_1016_j_jep_2024_119270 crossref_primary_10_1016_j_stemcr_2024_102391 crossref_primary_10_1038_s41420_022_00962_1 crossref_primary_10_1016_j_gendis_2023_03_031 crossref_primary_10_3389_fvets_2023_1324647 crossref_primary_10_1126_sciadv_abm3108 crossref_primary_10_3748_wjg_v26_i26_3750 crossref_primary_10_3390_cells12151973 crossref_primary_10_1016_j_labinv_2023_100228 crossref_primary_10_3389_fimmu_2019_02521 crossref_primary_10_1016_j_cellsig_2020_109648 crossref_primary_10_1096_fj_202201733RRR crossref_primary_10_3389_fphar_2022_842101 crossref_primary_10_1016_j_ajhg_2024_07_016 crossref_primary_10_1007_s10571_024_01512_2 crossref_primary_10_1096_fj_201902767R crossref_primary_10_1038_s41422_020_00411_7 crossref_primary_10_1186_s13578_022_00857_9 crossref_primary_10_1242_dev_202649 crossref_primary_10_7554_eLife_93908 crossref_primary_10_1007_s12094_022_02944_2 crossref_primary_10_3390_jdb12030020 crossref_primary_10_1126_sciadv_adq0638 crossref_primary_10_3390_ijms24087084 crossref_primary_10_3389_fphar_2022_919967 crossref_primary_10_1002_cam4_4228 crossref_primary_10_1007_s11010_023_04738_8 crossref_primary_10_1186_s12931_023_02512_4 crossref_primary_10_3389_fonc_2022_943683 crossref_primary_10_1016_j_bbadis_2023_166907 crossref_primary_10_1186_s13287_023_03571_6 crossref_primary_10_1242_jcs_259972 crossref_primary_10_1056_NEJMoa2033911 crossref_primary_10_1016_j_ijbiomac_2023_124155 crossref_primary_10_1186_s13287_023_03289_5 crossref_primary_10_1016_j_bbamcr_2020_118926 crossref_primary_10_1038_s41580_022_00472_z crossref_primary_10_1073_pnas_1911071116 crossref_primary_10_1242_dmm_047357 crossref_primary_10_3390_ijms25073912 crossref_primary_10_1038_s41574_020_00426_5 crossref_primary_10_1016_j_mad_2022_111741 crossref_primary_10_3389_fcell_2021_714746 crossref_primary_10_1002_bies_202000297 crossref_primary_10_2174_1566523223666230601102506 crossref_primary_10_1016_j_celrep_2024_114807 crossref_primary_10_1093_bioinformatics_btab240 crossref_primary_10_1371_journal_pone_0301082 crossref_primary_10_3390_cells11030460 crossref_primary_10_1016_j_ejphar_2023_176058 crossref_primary_10_1155_2020_5823676 crossref_primary_10_3389_fcell_2021_631623 crossref_primary_10_1007_s11626_024_00858_7 crossref_primary_10_1002_cbin_11264 crossref_primary_10_1016_j_cbpc_2024_109957 crossref_primary_10_4103_IJO_IJO_1120_24 crossref_primary_10_3389_fonc_2023_1120828 crossref_primary_10_1007_s10142_025_01571_8 crossref_primary_10_1016_j_ijbiomac_2025_141397 crossref_primary_10_3389_fphys_2023_1198873 crossref_primary_10_3390_cells12030447 crossref_primary_10_1016_j_ejphar_2024_177137 crossref_primary_10_1038_s41598_024_56661_7 crossref_primary_10_1042_BSR20222429 crossref_primary_10_1016_j_stemcr_2019_12_006 crossref_primary_10_1016_j_bonr_2024_101780 crossref_primary_10_2147_IJN_S373777 crossref_primary_10_3168_jdsc_2024_0702 crossref_primary_10_1371_journal_pcbi_1009227 crossref_primary_10_1016_j_heliyon_2023_e22382 crossref_primary_10_1016_j_tips_2024_03_003 crossref_primary_10_17925_EE_2021_17_2_121 crossref_primary_10_1089_thy_2019_0828 crossref_primary_10_1080_09553002_2023_2277372 crossref_primary_10_1038_s12276_023_01044_7 crossref_primary_10_7554_eLife_91648 crossref_primary_10_1007_s12035_024_04448_2 crossref_primary_10_1080_15257770_2022_2148692 crossref_primary_10_3390_cancers12092696 crossref_primary_10_1038_s41419_023_05747_7 crossref_primary_10_1126_sciadv_abl5613 crossref_primary_10_3390_ijms241411742 crossref_primary_10_1093_sxmrev_qeae006 crossref_primary_10_1182_bloodadvances_2022008405 crossref_primary_10_1038_d41586_019_02376_z crossref_primary_10_3390_cells9081784 crossref_primary_10_1002_jsp2_1254 crossref_primary_10_1038_s41380_024_02482_z crossref_primary_10_1021_acssensors_4c00806 crossref_primary_10_1021_acsomega_3c03605 crossref_primary_10_15252_embr_202255873 crossref_primary_10_3390_ijms222111647 crossref_primary_10_3390_ijms21176320 crossref_primary_10_1093_jas_skac091 crossref_primary_10_1016_j_taap_2022_115968 crossref_primary_10_3390_toxics13010063 crossref_primary_10_12677_ACM_2023_1351106 crossref_primary_10_3724_abbs_2023096 crossref_primary_10_1038_s41556_022_00910_2 crossref_primary_10_1083_jcb_201903017 crossref_primary_10_1111_jcmm_15667 crossref_primary_10_3390_ijms21113927 crossref_primary_10_1248_bpb_b22_00393 crossref_primary_10_1111_wrr_12943 crossref_primary_10_1080_21655979_2021_2009974 crossref_primary_10_1038_s41418_020_00697_5 crossref_primary_10_1042_BCJ20210043 crossref_primary_10_1073_pnas_2005395117 crossref_primary_10_1186_s12860_019_0208_1 crossref_primary_10_1016_j_freeradbiomed_2023_11_030 crossref_primary_10_1016_j_trecan_2020_09_006 crossref_primary_10_1007_s10439_020_02498_w crossref_primary_10_3389_fcell_2022_837827 crossref_primary_10_1016_j_envres_2024_118752 crossref_primary_10_1007_s12035_023_03731_y crossref_primary_10_3389_fmars_2020_00471 crossref_primary_10_1016_j_arteri_2019_03_008 crossref_primary_10_1016_j_tice_2022_101750 crossref_primary_10_1038_s41467_021_24731_3 crossref_primary_10_3389_fcell_2025_1522705 crossref_primary_10_1073_pnas_2108408119 crossref_primary_10_3390_cancers14020403 crossref_primary_10_1016_j_gene_2024_148175 crossref_primary_10_1111_jfbc_13886 crossref_primary_10_1016_j_pharmthera_2021_107881 crossref_primary_10_1038_s41594_022_00838_z crossref_primary_10_3390_cells8101173 crossref_primary_10_1016_j_bone_2023_116933 crossref_primary_10_2174_1874467212666190304121131 crossref_primary_10_1111_ics_13005 crossref_primary_10_1080_19420862_2024_2435478 crossref_primary_10_1080_15592294_2021_1899887 crossref_primary_10_1186_s13040_020_00217_8 crossref_primary_10_1007_s00210_023_02668_2 crossref_primary_10_3390_ijms21113904 crossref_primary_10_1242_jcs_245845 crossref_primary_10_1021_acscentsci_2c00836 crossref_primary_10_2147_CMAR_S241519 crossref_primary_10_1002_jgm_3136 crossref_primary_10_1038_s41598_019_54741_7 crossref_primary_10_1186_s12967_018_1645_x crossref_primary_10_1016_j_cellsig_2022_110585 crossref_primary_10_1021_acsptsci_2c00239 crossref_primary_10_1016_j_jbc_2023_105615 crossref_primary_10_1038_s41598_023_35719_y crossref_primary_10_1186_s13059_024_03205_x crossref_primary_10_1016_j_bbadis_2024_167550 crossref_primary_10_1007_s00018_023_05099_7 crossref_primary_10_1007_s00018_024_05510_x crossref_primary_10_3390_cells12182303 crossref_primary_10_1210_jendso_bvac121 crossref_primary_10_3389_fcell_2021_667765 crossref_primary_10_3389_fmed_2023_1164656 crossref_primary_10_1073_pnas_2300606121 crossref_primary_10_1186_s12915_020_00883_4 crossref_primary_10_1111_jgh_15937 crossref_primary_10_1002_hed_26888 crossref_primary_10_1590_1806_9282_20221496 crossref_primary_10_3390_ijms242316605 crossref_primary_10_1038_s41467_022_28139_5 crossref_primary_10_3390_genes11101228 crossref_primary_10_1016_j_celrep_2022_110821 crossref_primary_10_1142_S0192415X23500210 crossref_primary_10_1016_j_jare_2023_12_016 crossref_primary_10_3390_ijms22083863 crossref_primary_10_3389_fgene_2021_648158 crossref_primary_10_1016_j_ejphar_2025_177333 crossref_primary_10_1038_s41580_021_00448_5 crossref_primary_10_1007_s11926_019_0822_0 crossref_primary_10_3390_biomedicines12081730 crossref_primary_10_1186_s12964_022_00840_4 crossref_primary_10_1016_j_nbd_2023_106250 crossref_primary_10_3390_ijms21155455 crossref_primary_10_3389_fcell_2022_947337 crossref_primary_10_3390_biom11010100 crossref_primary_10_1002_ptr_7307 crossref_primary_10_1007_s11427_023_2521_x crossref_primary_10_1002_wsbm_1520 crossref_primary_10_1038_s41467_020_15332_7 crossref_primary_10_1016_j_cellsig_2022_110484 crossref_primary_10_1146_annurev_biochem_040320_103615 crossref_primary_10_1002_cai2_139 crossref_primary_10_3389_fphar_2020_580884 crossref_primary_10_1016_j_phrs_2024_107565 crossref_primary_10_7554_eLife_54469 crossref_primary_10_1002_stem_3289 crossref_primary_10_1007_s11064_022_03545_9 crossref_primary_10_1016_j_isci_2023_106233 crossref_primary_10_3390_vision7020043 crossref_primary_10_3892_etm_2021_10310 crossref_primary_10_1016_j_aninu_2021_06_001 crossref_primary_10_3390_ijms23063317 crossref_primary_10_1080_01902148_2022_2115166 crossref_primary_10_1080_0886022X_2022_2030360 crossref_primary_10_3390_biomedicines10040827 crossref_primary_10_3390_neuroglia5040028 crossref_primary_10_1002_jcp_29907 crossref_primary_10_1016_j_biomaterials_2022_121431 crossref_primary_10_1098_rsob_200041 crossref_primary_10_1002_jbmr_3975 crossref_primary_10_1186_s12935_022_02663_2 crossref_primary_10_3389_ftox_2021_806311 crossref_primary_10_3390_cells12182209 crossref_primary_10_1186_s13053_023_00260_6 crossref_primary_10_1038_s41413_024_00342_8 crossref_primary_10_3390_membranes11110844 crossref_primary_10_1039_D4TB00624K crossref_primary_10_5483_BMBRep_2020_53_8_268 crossref_primary_10_3103_S0096392521040064 crossref_primary_10_3390_ijms23105319 crossref_primary_10_1155_2022_5338956 crossref_primary_10_3892_or_2023_8609 crossref_primary_10_3324_haematol_2020_266155 crossref_primary_10_1016_j_drudis_2021_07_007 crossref_primary_10_1097_MOP_0000000000001173 crossref_primary_10_3389_fcell_2020_588370 crossref_primary_10_3389_fimmu_2023_1247330 crossref_primary_10_1007_s40495_023_00333_z crossref_primary_10_1186_s13046_020_01784_8 crossref_primary_10_1016_j_cbpc_2023_109823 crossref_primary_10_3390_ijms25084548 crossref_primary_10_1038_s41598_020_64008_1 crossref_primary_10_2174_0113816128308454240823074555 crossref_primary_10_3892_ol_2024_14743 crossref_primary_10_1007_s40778_019_00166_x crossref_primary_10_3390_ijms22158182 crossref_primary_10_32604_or_2022_026776 crossref_primary_10_3389_fendo_2022_910964 crossref_primary_10_2174_0113892010289575240306033011 crossref_primary_10_1016_j_molcel_2021_07_013 crossref_primary_10_3389_fendo_2022_922825 crossref_primary_10_1021_acs_analchem_3c00633 crossref_primary_10_1016_j_isci_2023_107309 crossref_primary_10_1126_sciadv_ade1792 crossref_primary_10_1007_s10792_022_02566_1 crossref_primary_10_3389_fphys_2023_1191965 crossref_primary_10_3892_mco_2024_2779 crossref_primary_10_1126_sciadv_adh7748 crossref_primary_10_3390_ijms24044106 crossref_primary_10_1016_j_celrep_2022_110902 crossref_primary_10_1083_jcb_202205069 crossref_primary_10_1007_s40572_022_00385_1 crossref_primary_10_1016_j_snb_2023_134145 crossref_primary_10_1016_j_biochi_2022_04_003 crossref_primary_10_1038_s41514_024_00149_1 crossref_primary_10_1021_acs_jmedchem_2c01016 crossref_primary_10_4252_wjsc_v14_i3_219 crossref_primary_10_1016_j_jacbts_2021_09_011 crossref_primary_10_1016_j_artere_2019_03_008 crossref_primary_10_7554_eLife_91648_4 crossref_primary_10_1002_pmic_202200460 crossref_primary_10_1371_journal_pgen_1009469 crossref_primary_10_3389_fmolb_2021_703110 crossref_primary_10_1016_j_exer_2022_109008 crossref_primary_10_1111_jre_13022 crossref_primary_10_1136_gutjnl_2024_332752 crossref_primary_10_3390_cancers13143446 crossref_primary_10_1007_s10585_024_10292_4 crossref_primary_10_1080_1354750X_2024_2447089 crossref_primary_10_1242_jcs_261241 crossref_primary_10_7554_eLife_65552 crossref_primary_10_1172_jci_insight_159331 crossref_primary_10_3389_fchem_2021_664489 crossref_primary_10_3390_cells11223592 crossref_primary_10_1177_2397847319858563 crossref_primary_10_3390_plants12051147 crossref_primary_10_1038_s41389_021_00354_7 crossref_primary_10_1038_s41598_023_37521_2 crossref_primary_10_1016_j_hbpd_2022_01_003 crossref_primary_10_1093_biolre_ioac128 crossref_primary_10_1093_jas_skab268 crossref_primary_10_1002_bies_202100138 crossref_primary_10_1182_bloodadvances_2021004845 crossref_primary_10_3389_fonc_2020_618515 crossref_primary_10_3390_cancers12123638 crossref_primary_10_1016_j_critrevonc_2022_103595 crossref_primary_10_1016_j_canlet_2024_217297 crossref_primary_10_1016_j_expneurol_2022_114142 crossref_primary_10_2174_1568026623666230303101810 crossref_primary_10_1038_s41598_023_34700_z crossref_primary_10_3390_cells11193153 crossref_primary_10_2174_0109298673271547231108060805 crossref_primary_10_1016_j_cmet_2019_01_002 crossref_primary_10_3389_fendo_2023_1254977 crossref_primary_10_1016_j_cellsig_2023_110807 crossref_primary_10_3390_ijms22052233 crossref_primary_10_1016_j_bbrc_2022_06_054 crossref_primary_10_1016_j_gendis_2023_06_030 crossref_primary_10_1177_0022034520967353 crossref_primary_10_3390_biomedicines11102719 crossref_primary_10_1016_j_jprot_2022_104489 crossref_primary_10_1021_acschembio_0c00381 crossref_primary_10_1007_s12013_025_01711_8 crossref_primary_10_7554_eLife_64444 crossref_primary_10_1016_j_mcp_2020_101623 crossref_primary_10_4103_aja202377 crossref_primary_10_1155_2022_6993994 crossref_primary_10_3390_ijms24098401 crossref_primary_10_1016_j_jbc_2023_105350 crossref_primary_10_1186_s12981_023_00577_1 crossref_primary_10_1371_journal_pbio_3001947 crossref_primary_10_3389_fcell_2021_623753 crossref_primary_10_1016_j_chembiol_2023_11_006 crossref_primary_10_3350_cmh_2022_0058 crossref_primary_10_1242_jcs_260285 crossref_primary_10_15283_ijsc23070 crossref_primary_10_3892_or_2021_8246 crossref_primary_10_1128_IAI_00094_19 crossref_primary_10_3390_cells11152262 crossref_primary_10_1165_rcmb_2022_0299OC crossref_primary_10_1016_j_cellsig_2022_110308 crossref_primary_10_1371_journal_pbio_3001619 crossref_primary_10_1126_science_ade6970 crossref_primary_10_1002_jcp_27570 crossref_primary_10_3390_ijms221910306 crossref_primary_10_1007_s13402_021_00591_3 crossref_primary_10_3390_ijms24021575 crossref_primary_10_1007_s11926_022_01092_4 crossref_primary_10_3390_biomedicines11092361 crossref_primary_10_3390_insects14050469 crossref_primary_10_1002_cbin_11812 crossref_primary_10_1007_s10735_018_9808_x crossref_primary_10_1186_s13008_020_0059_3 crossref_primary_10_1016_j_brainresbull_2020_07_005 crossref_primary_10_1039_D0BM01943G crossref_primary_10_3389_fonc_2019_00397 crossref_primary_10_1016_j_gendis_2024_101432 crossref_primary_10_1093_bib_bbae436 crossref_primary_10_1124_pharmrev_124_001062 crossref_primary_10_1155_2021_6622439 crossref_primary_10_3389_fimmu_2023_1258074 crossref_primary_10_1038_s41417_023_00682_3 crossref_primary_10_1111_febs_70024 crossref_primary_10_3390_ijms21207697 crossref_primary_10_1016_j_biochi_2023_03_001 crossref_primary_10_1007_s12015_020_10088_5 crossref_primary_10_1016_j_isci_2023_106649 crossref_primary_10_1093_molbev_msad208 crossref_primary_10_1016_j_bbrc_2023_149441 crossref_primary_10_1016_j_fct_2020_111642 crossref_primary_10_1016_j_tox_2022_153408 crossref_primary_10_1038_s41598_022_11596_9 crossref_primary_10_1002_stem_3437 crossref_primary_10_3389_fcell_2021_709823 crossref_primary_10_1016_j_celrep_2022_110851 crossref_primary_10_1096_fj_202001202R crossref_primary_10_3389_fcell_2021_806181 crossref_primary_10_1038_s42003_020_01386_2 crossref_primary_10_1016_j_psychres_2024_115983 crossref_primary_10_3389_fmed_2024_1448248 crossref_primary_10_1128_spectrum_04827_22 crossref_primary_10_1080_07391102_2019_1696707 crossref_primary_10_1101_gad_321968_118 crossref_primary_10_1186_s13287_022_03205_3 crossref_primary_10_1016_j_preteyeres_2022_101149 crossref_primary_10_1016_j_lfs_2023_121787 crossref_primary_10_1016_j_ctrv_2023_102675 crossref_primary_10_3390_ijms25095047 crossref_primary_10_1007_s11010_024_04938_w crossref_primary_10_1007_s11033_024_09996_3 crossref_primary_10_1016_j_kint_2022_02_029 crossref_primary_10_1177_1721727X221138857 crossref_primary_10_1111_jcmm_18486 crossref_primary_10_1242_dev_202140 crossref_primary_10_1016_j_bbrep_2023_101499 crossref_primary_10_1186_s12915_024_01845_w crossref_primary_10_1111_febs_16665 crossref_primary_10_1007_s10555_023_10122_1 crossref_primary_10_3390_cells14010056 crossref_primary_10_1016_j_genrep_2020_100826 crossref_primary_10_1038_s41467_024_55431_3 crossref_primary_10_3389_fcell_2021_667581 |
Cites_doi | 10.1126/science.1239730 10.1038/35035124 10.1038/35035110 10.1016/j.devcel.2009.11.006 10.1128/MCB.22.4.1184-1193.2002 10.1016/S0092-8674(01)00336-1 10.1073/pnas.1114802109 10.1016/S1097-2765(03)00484-2 10.1016/S0960-9822(01)00290-1 10.1101/gad.14.10.1181 10.1126/science.280.5363.596 10.7554/eLife.33126 10.1016/j.cell.2012.04.039 10.1073/pnas.1409857112 10.1038/nm.2388 10.1038/sj.emboj.7600817 10.1016/0092-8674(90)90696-C 10.1038/nature04170 10.1038/sj.onc.1208303 10.1242/jcs.111.21.3179 10.1016/S0092-8674(02)00685-2 10.1242/dev.141507 10.1073/pnas.94.7.2859 10.1038/nm979 10.1073/pnas.1118777109 10.1371/journal.pone.0004046 10.1016/j.cell.2013.07.004 10.1038/nature11308 10.1146/annurev.cellbio.20.010403.113126 10.1038/nature06196 10.1016/S0092-8674(01)00571-2 10.1002/stem.2723 10.1016/j.ydbio.2011.11.003 10.1002/jbmr.2351 10.1016/j.cell.2006.02.049 10.1073/pnas.0803025105 10.1038/nature14259 10.1016/j.cell.2006.04.009 10.1038/ncb2260 10.1038/287795a0 10.1126/science.275.5307.1787 10.1016/S0092-8674(01)00208-2 10.1038/ncomms3787 10.1016/j.devcel.2010.01.016 10.1038/nature22313 10.1101/gad.230302 10.1086/338450 10.1016/S0960-9822(98)70226-X 10.1101/gr.3437105 10.1016/j.cell.2017.05.016 10.1016/S0960-9822(02)70716-1 10.1038/nature14863 10.1038/35083081 10.1038/nature04185 10.1038/382638a0 10.1038/nrm2717 10.1242/dev.131664 10.1038/382225a0 10.1002/jbmr.3143 10.1073/pnas.0401733101 10.1016/S0092-8674(00)81922-4 10.1038/nm.3074 10.1016/S0092-8674(00)81921-2 10.1038/nature11252 10.1038/34848 10.1016/0092-8674(89)90506-0 10.1101/gad.8.1.118 10.1038/26982 10.1101/cshperspect.a007880 10.1073/pnas.1106083108 10.1073/pnas.0707210104 10.1073/pnas.1601599113 10.1016/S0168-9525(01)02349-6 10.1126/science.1222879 10.1101/gad.267103 10.1016/j.stem.2012.05.023 10.1016/S0960-9822(99)80091-8 10.1002/j.1460-2075.1993.tb06225.x 10.1136/jmg.39.2.91 10.1016/S1097-2765(01)00224-6 10.1038/nature01611 10.1016/S0092-8674(00)80112-9 10.1038/embor.2011.175 10.1242/dev.121.12.4095 10.1038/35035117 10.1038/26989 10.1101/cshperspect.a007898 10.1038/ncb2903 10.1038/nature16937 10.1073/pnas.92.7.3046 10.1038/nrg3563 10.1056/NEJMoa013444 10.1016/j.devcel.2015.02.014 10.1126/science.1092436 10.1101/gad.869201 10.1038/ng.239 10.7554/eLife.01998 10.1016/S1534-5807(02)00167-3 10.1242/dev.039651 10.1016/j.devcel.2011.09.007 10.1016/S0092-8674(00)81925-X 10.1016/j.devcel.2005.02.013 10.1038/ncb2314 10.1016/j.stem.2009.05.015 10.1002/dvdy.24230 10.1126/science.272.5264.1023 10.1038/1270 10.1086/318811 10.1371/journal.pbio.0000010 10.1016/0092-8674(87)90038-9 10.1128/MCB.01034-07 10.1038/nature07935 10.1016/j.cell.2012.05.015 10.1016/j.stem.2008.12.009 10.1128/MCB.22.4.1172-1183.2002 10.1016/j.devcel.2005.03.016 10.1038/18899 10.1056/NEJMoa1708322 10.1126/science.8259518 10.1016/0012-1606(76)90108-1 10.1073/pnas.0408742102 10.1016/j.molcel.2009.11.017 10.1038/nature11019 10.1242/dev.104976 10.1242/dev.094458 10.1016/j.bone.2017.03.044 10.1242/dev.02674 10.1101/gad.13.3.270 10.1101/gad.219915.113 10.1053/j.gastro.2006.08.039 10.1038/nature10337 10.1101/gad.1076103 10.1002/(SICI)1521-1878(199807)20:7<536::AID-BIES4>3.0.CO;2-I 10.1016/j.stem.2009.11.013 10.1242/dev.01318 10.1016/j.stemcr.2014.11.007 10.1038/nature22306 10.1016/j.cell.2005.01.013 10.1128/MCB.25.11.4371-4376.2005 10.1073/pnas.1613849113 10.1016/j.molcel.2017.06.009 10.1074/jbc.M112.381970 10.1371/journal.pone.0018650 10.1126/science.1248012 |
ContentType | Journal Article |
Copyright | 2018. Published by The Company of Biologists Ltd. Copyright The Company of Biologists Ltd Jun 1, 2018 |
Copyright_xml | – notice: 2018. Published by The Company of Biologists Ltd. – notice: Copyright The Company of Biologists Ltd Jun 1, 2018 |
DBID | AAYXX CITATION NPM 7QP 7SS 7TK 7TM 7U9 8FD FR3 H94 P64 RC3 7X8 |
DOI | 10.1242/dev.146589 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | dev146589 |
ExternalDocumentID | 29884654 10_1242_dev_146589 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: CIHR grantid: 364969 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW NPM 7QP 7SS 7TK 7TM 7U9 8FD FR3 H94 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c381t-e18fec1884aa0de13bef2ea253bb5f2d6219e6d1aa66c335b6550eb4883818fa3 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Tue Aug 05 10:45:20 EDT 2025 Fri Jul 25 04:30:48 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Tue Jul 01 00:45:12 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Wnt protein Epigenetics Wnt signaling |
Language | English |
License | http://www.biologists.com/user-licence-1-1 2018. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-e18fec1884aa0de13bef2ea253bb5f2d6219e6d1aa66c335b6550eb4883818fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7241-9044 |
PMID | 29884654 |
PQID | 2054084054 |
PQPubID | 2046254 |
ParticipantIDs | proquest_miscellaneous_2052804054 proquest_journals_2054084054 pubmed_primary_29884654 crossref_primary_10_1242_dev_146589 crossref_citationtrail_10_1242_dev_146589 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2018 |
Publisher | The Company of Biologists Ltd |
Publisher_xml | – name: The Company of Biologists Ltd |
References | Tumbar (2021042609144414400_DEV146589C122) 2004; 303 Barker (2021042609144414400_DEV146589C7) 2010; 6 Nakamura (2021042609144414400_DEV146589C89) 2016; 143 Klingensmith (2021042609144414400_DEV146589C63) 1994; 8 Behrens (2021042609144414400_DEV146589C10) 1998; 280 Janda (2021042609144414400_DEV146589C57) 2012; 337 Hsieh (2021042609144414400_DEV146589C54) 1999; 398 Kurek (2021042609144414400_DEV146589C68) 2015; 4 Proffitt (2021042609144414400_DEV146589C100) 2012; 287 Flack (2021042609144414400_DEV146589C38) 2017; 67 Goentoro (2021042609144414400_DEV146589C43) 2009; 36 Leyns (2021042609144414400_DEV146589C71) 1997; 88 Koo (2021042609144414400_DEV146589C64) 2012; 488 Davidson (2021042609144414400_DEV146589C31) 2012; 109 Carmon (2021042609144414400_DEV146589C18) 2011; 108 Van Mater (2021042609144414400_DEV146589C127) 2003; 17 Van Raay (2021042609144414400_DEV146589C128) 2011; 6 Glinka (2021042609144414400_DEV146589C41) 2011; 12 van de Wetering (2021042609144414400_DEV146589C124) 1997; 88 Logan (2021042609144414400_DEV146589C77) 2004; 20 Davidson (2021042609144414400_DEV146589C30) 2009; 17 Herr (2021042609144414400_DEV146589C52) 2012; 361 Lim (2021042609144414400_DEV146589C73) 2013; 342 Stamos (2021042609144414400_DEV146589C114) 2012; 5 Angers (2021042609144414400_DEV146589C144) 2009; 10 González-Sancho (2021042609144414400_DEV146589C45) 2005; 24 Zebisch (2021042609144414400_DEV146589C140) 2013; 4 Hart (2021042609144414400_DEV146589C50) 1998; 8 Loots (2021042609144414400_DEV146589C78) 2005; 15 Tu (2021042609144414400_DEV146589C121) 2015; 112 Bänziger (2021042609144414400_DEV146589C5) 2006; 125 Andl (2021042609144414400_DEV146589C2) 2002; 2 Cotsarelis (2021042609144414400_DEV146589C26) 1990; 61 Winston (2021042609144414400_DEV146589C136) 1999; 13 Clevers (2021042609144414400_DEV146589C23) 2013; 154 Korinek (2021042609144414400_DEV146589C65) 1998; 19 Kabiri (2021042609144414400_DEV146589C60) 2014; 141 Kishimoto (2021042609144414400_DEV146589C62) 2000; 14 Lebensohn (2021042609144414400_DEV146589C69) 2018; 7 Kosinski (2021042609144414400_DEV146589C66) 2007; 104 Janda (2021042609144414400_DEV146589C58) 2017; 545 Liu (2021042609144414400_DEV146589C76) 2002; 108 Bartscherer (2021042609144414400_DEV146589C9) 2006; 125 Sharma (2021042609144414400_DEV146589C113) 1976; 48 Piao (2021042609144414400_DEV146589C96) 2008; 3 Yang-Snyder (2021042609144414400_DEV146589C139) 1996; 6 Cselenyi (2021042609144414400_DEV146589C27) 2008; 105 Oshima (2021042609144414400_DEV146589C95) 2001; 104 Pinson (2021042609144414400_DEV146589C97) 2000; 407 ten Berge (2021042609144414400_DEV146589C120) 2011; 13 Chen (2021042609144414400_DEV146589C20) 2011; 21 Rubinfeld (2021042609144414400_DEV146589C106) 1993; 262 Niehrs (2021042609144414400_DEV146589C91) 2010; 137 Day (2021042609144414400_DEV146589C32) 2005; 8 Balemans (2021042609144414400_DEV146589C4) 2002; 39 Bhanot (2021042609144414400_DEV146589C13) 1996; 382 Goodman (2021042609144414400_DEV146589C46) 2006; 133 Sato (2021042609144414400_DEV146589C110) 2009; 459 Satoh (2021042609144414400_DEV146589C111) 2004; 101 Kakugawa (2021042609144414400_DEV146589C61) 2015; 519 Tauriello (2021042609144414400_DEV146589C119) 2012; 109 Zhang (2021042609144414400_DEV146589C143) 2015; 32 Wang (2021042609144414400_DEV146589C130) 1997; 88 Molenaar (2021042609144414400_DEV146589C85) 1996; 86 Behrens (2021042609144414400_DEV146589C11) 1996; 382 Green (2021042609144414400_DEV146589C48) 2015; 244 Hart (2021042609144414400_DEV146589C51) 1999; 9 Moon (2021042609144414400_DEV146589C86) 1998; 20 Lyashenko (2021042609144414400_DEV146589C80) 2011; 13 Tao (2021042609144414400_DEV146589C118) 2005; 120 Glinka (2021042609144414400_DEV146589C40) 1998; 391 Farin (2021042609144414400_DEV146589C36) 2016; 530 Krasnow (2021042609144414400_DEV146589C67) 1995; 121 Lim (2021042609144414400_DEV146589C74) 2016; 113 Rattner (2021042609144414400_DEV146589C101) 1997; 94 Tabar (2021042609144414400_DEV146589C145) 2014; 15 Cong (2021042609144414400_DEV146589C25) 2004; 131 Cavallo (2021042609144414400_DEV146589C19) 1998; 395 Brunkow (2021042609144414400_DEV146589C16) 2001; 68 Hill (2021042609144414400_DEV146589C53) 2005; 8 Yan (2021042609144414400_DEV146589C138) 2017; 545 Nusse (2021042609144414400_DEV146589C93) 2017; 169 van Amerongen (2021042609144414400_DEV146589C123) 2012; 11 van den Heuvel (2021042609144414400_DEV146589C125) 1993; 12 Davidson (2021042609144414400_DEV146589C29) 2005; 438 Cui (2021042609144414400_DEV146589C28) 2011; 17 Gong (2021042609144414400_DEV146589C44) 2001; 107 Huelsken (2021042609144414400_DEV146589C55) 2001; 105 Van der Flier (2021042609144414400_DEV146589C126) 2007; 132 Boyden (2021042609144414400_DEV146589C15) 2002; 346 Wang (2021042609144414400_DEV146589C131) 2015; 524 Stamos (2021042609144414400_DEV146589C115) 2014; 3 Lee (2021042609144414400_DEV146589C70) 2003; 1 Nüsslein-Volhard (2021042609144414400_DEV146589C94) 1980; 287 Lien (2021042609144414400_DEV146589C72) 2014; 16 Amit (2021042609144414400_DEV146589C1) 2002; 16 Pinto (2021042609144414400_DEV146589C98) 2003; 17 Tamai (2021042609144414400_DEV146589C116) 2000; 407 Cancer Genome Atlas Network (2021042609144414400_DEV146589C17) 2012; 487 Saag (2021042609144414400_DEV146589C108) 2017; 377 Zhang (2021042609144414400_DEV146589C142) 2012; 149 Willert (2021042609144414400_DEV146589C133) 2003; 423 Xu (2021042609144414400_DEV146589C137) 2016; 113 Povelones (2021042609144414400_DEV146589C99) 2005; 24 Recker (2021042609144414400_DEV146589C102) 2015; 30 Barker (2021042609144414400_DEV146589C6) 2007; 449 Glorieux (2021042609144414400_DEV146589C42) 2017; 32 Mao (2021042609144414400_DEV146589C83) 2001; 7 Chia (2021042609144414400_DEV146589C22) 2005; 25 Lustig (2021042609144414400_DEV146589C79) 2002; 22 Bafico (2021042609144414400_DEV146589C3) 2001; 3 Munemitsu (2021042609144414400_DEV146589C88) 1995; 92 Tamai (2021042609144414400_DEV146589C117) 2004; 13 Semënov (2021042609144414400_DEV146589C112) 2001; 11 Hao (2021042609144414400_DEV146589C49) 2012; 485 Nusse (2021042609144414400_DEV146589C92) 2001; 17 MacDonald (2021042609144414400_DEV146589C82) 2012; 4 Rubinfeld (2021042609144414400_DEV146589C107) 1996; 272 Chen (2021042609144414400_DEV146589C21) 2013; 27 Genikhovich (2021042609144414400_DEV146589C39) 2017; 144 Fevr (2021042609144414400_DEV146589C37) 2007; 27 de Lau (2021042609144414400_DEV146589C33) 2011; 476 Jho (2021042609144414400_DEV146589C59) 2002; 22 McMahon (2021042609144414400_DEV146589C84) 1989; 58 Nichols (2021042609144414400_DEV146589C90) 2009; 4 Rijsewijk (2021042609144414400_DEV146589C103) 1987; 50 Little (2021042609144414400_DEV146589C75) 2002; 70 Jaks (2021042609144414400_DEV146589C56) 2008; 40 Baron (2021042609144414400_DEV146589C8) 2013; 19 Williams (2021042609144414400_DEV146589C135) 2012; 149 Veltri (2021042609144414400_DEV146589C129) 2018; 36 Wehrli (2021042609144414400_DEV146589C132) 2000; 407 Lyle (2021042609144414400_DEV146589C81) 1998; 111 Greco (2021042609144414400_DEV146589C47) 2009; 4 Williams (2021042609144414400_DEV146589C134) 2017; 102 Biechele (2021042609144414400_DEV146589C14) 2013; 140 Morin (2021042609144414400_DEV146589C87) 1997; 275 Zeng (2021042609144414400_DEV146589C141) 2005; 438 Clevers (2021042609144414400_DEV146589C24) 2014; 346 Rousset (2021042609144414400_DEV146589C105) 2001; 15 Sato (2021042609144414400_DEV146589C109) 2004; 10 Bennett (2021042609144414400_DEV146589C12) 2005; 102 Enshell-Seijffers (2021042609144414400_DEV146589C35) 2010; 18 Roose (2021042609144414400_DEV146589C104) 1998; 395 |
References_xml | – volume: 342 start-page: 1226 year: 2013 ident: 2021042609144414400_DEV146589C73 article-title: Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling publication-title: Science doi: 10.1126/science.1239730 – volume: 407 start-page: 535 year: 2000 ident: 2021042609144414400_DEV146589C97 article-title: An LDL-receptor-related protein mediates Wnt signalling in mice publication-title: Nature doi: 10.1038/35035124 – volume: 407 start-page: 527 year: 2000 ident: 2021042609144414400_DEV146589C132 article-title: arrow encodes an LDL-receptor-related protein essential for Wingless signalling publication-title: Nature doi: 10.1038/35035110 – volume: 17 start-page: 788 year: 2009 ident: 2021042609144414400_DEV146589C30 article-title: Cell cycle control of wnt receptor activation publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.11.006 – volume: 22 start-page: 1184 year: 2002 ident: 2021042609144414400_DEV146589C79 article-title: Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.4.1184-1193.2002 – volume: 105 start-page: 533 year: 2001 ident: 2021042609144414400_DEV146589C55 article-title: beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin publication-title: Cell doi: 10.1016/S0092-8674(01)00336-1 – volume: 109 start-page: E812 year: 2012 ident: 2021042609144414400_DEV146589C119 article-title: Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1114802109 – volume: 13 start-page: 149 year: 2004 ident: 2021042609144414400_DEV146589C117 article-title: A mechanism for Wnt coreceptor activation publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00484-2 – volume: 11 start-page: 951 year: 2001 ident: 2021042609144414400_DEV146589C112 article-title: Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00290-1 – volume: 14 start-page: 1181 year: 2000 ident: 2021042609144414400_DEV146589C62 article-title: Wnt signaling maintains the hair-inducing activity of the dermal papilla publication-title: Genes Dev. doi: 10.1101/gad.14.10.1181 – volume: 280 start-page: 596 year: 1998 ident: 2021042609144414400_DEV146589C10 article-title: Functional interaction of an axin homolog, conductin, with -catenin, APC, and GSK3 publication-title: Science doi: 10.1126/science.280.5363.596 – volume: 7 start-page: e33126 year: 2018 ident: 2021042609144414400_DEV146589C69 article-title: R-spondins can potentiate WNT signaling without LGRs publication-title: Elife doi: 10.7554/eLife.33126 – volume: 149 start-page: 1565 year: 2012 ident: 2021042609144414400_DEV146589C142 article-title: Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation publication-title: Cell doi: 10.1016/j.cell.2012.04.039 – volume: 112 start-page: E478 year: 2015 ident: 2021042609144414400_DEV146589C121 article-title: Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1409857112 – volume: 17 start-page: 684 year: 2011 ident: 2021042609144414400_DEV146589C28 article-title: Lrp5 functions in bone to regulate bone mass publication-title: Nat. Med. doi: 10.1038/nm.2388 – volume: 24 start-page: 3493 year: 2005 ident: 2021042609144414400_DEV146589C99 article-title: The role of the cysteine-rich domain of Frizzled in Wingless-Armadillo signaling publication-title: EMBO J. doi: 10.1038/sj.emboj.7600817 – volume: 61 start-page: 1329 year: 1990 ident: 2021042609144414400_DEV146589C26 article-title: Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis publication-title: Cell doi: 10.1016/0092-8674(90)90696-C – volume: 438 start-page: 867 year: 2005 ident: 2021042609144414400_DEV146589C29 article-title: Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction publication-title: Nature doi: 10.1038/nature04170 – volume: 24 start-page: 1098 year: 2005 ident: 2021042609144414400_DEV146589C45 article-title: The Wnt antagonist DICKKOPF-1 gene is a downstream target of β-catenin/TCF and is downregulated in human colon cancer publication-title: Oncogene doi: 10.1038/sj.onc.1208303 – volume: 111 start-page: 3179 year: 1998 ident: 2021042609144414400_DEV146589C81 article-title: The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells publication-title: J. Cell Sci. doi: 10.1242/jcs.111.21.3179 – volume: 108 start-page: 837 year: 2002 ident: 2021042609144414400_DEV146589C76 article-title: Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism publication-title: Cell doi: 10.1016/S0092-8674(02)00685-2 – volume: 144 start-page: 3392 year: 2017 ident: 2021042609144414400_DEV146589C39 article-title: On the evolution of bilaterality publication-title: Development doi: 10.1242/dev.141507 – volume: 94 start-page: 2859 year: 1997 ident: 2021042609144414400_DEV146589C101 article-title: A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.7.2859 – volume: 10 start-page: 55 year: 2004 ident: 2021042609144414400_DEV146589C109 article-title: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor publication-title: Nat. Med. doi: 10.1038/nm979 – volume: 109 start-page: 4485 year: 2012 ident: 2021042609144414400_DEV146589C31 article-title: Wnt/ -catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1118777109 – volume: 3 start-page: e4046 year: 2008 ident: 2021042609144414400_DEV146589C96 article-title: Direct inhibition of GSK3β by the phosphorylated cytoplasmic domain of LRP6 in Wnt/β-catenin signaling publication-title: PLoS One doi: 10.1371/journal.pone.0004046 – volume: 154 start-page: 274 year: 2013 ident: 2021042609144414400_DEV146589C23 article-title: The intestinal crypt, a prototype stem cell compartment publication-title: Cell doi: 10.1016/j.cell.2013.07.004 – volume: 488 start-page: 665 year: 2012 ident: 2021042609144414400_DEV146589C64 article-title: Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors publication-title: Nature doi: 10.1038/nature11308 – volume: 20 start-page: 781 year: 2004 ident: 2021042609144414400_DEV146589C77 article-title: The Wnt signaling pathway in development and disease publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.20.010403.113126 – volume: 449 start-page: 1003 year: 2007 ident: 2021042609144414400_DEV146589C6 article-title: Identification of stem cells in small intestine and colon by marker gene Lgr5 publication-title: Nature doi: 10.1038/nature06196 – volume: 107 start-page: 513 year: 2001 ident: 2021042609144414400_DEV146589C44 article-title: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development publication-title: Cell doi: 10.1016/S0092-8674(01)00571-2 – volume: 36 start-page: 22 year: 2018 ident: 2021042609144414400_DEV146589C129 article-title: Concise review: Wnt signaling pathways in skin development and epidermal stem cells publication-title: Stem Cells doi: 10.1002/stem.2723 – volume: 361 start-page: 392 year: 2012 ident: 2021042609144414400_DEV146589C52 article-title: Porcupine-mediated lipidation is required for Wnt recognition by Wls publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.11.003 – volume: 30 start-page: 216 year: 2015 ident: 2021042609144414400_DEV146589C102 article-title: A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2351 – volume: 125 start-page: 509 year: 2006 ident: 2021042609144414400_DEV146589C5 article-title: Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells publication-title: Cell doi: 10.1016/j.cell.2006.02.049 – volume: 105 start-page: 8032 year: 2008 ident: 2021042609144414400_DEV146589C27 article-title: LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of -catenin publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0803025105 – volume: 519 start-page: 187 year: 2015 ident: 2021042609144414400_DEV146589C61 article-title: Notum deacylates Wnt proteins to suppress signalling activity publication-title: Nature doi: 10.1038/nature14259 – volume: 125 start-page: 523 year: 2006 ident: 2021042609144414400_DEV146589C9 article-title: Secretion of Wnt ligands requires Evi, a conserved transmembrane protein publication-title: Cell doi: 10.1016/j.cell.2006.04.009 – volume: 13 start-page: 753 year: 2011 ident: 2021042609144414400_DEV146589C80 article-title: Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation publication-title: Nat. Cell Biol. doi: 10.1038/ncb2260 – volume: 287 start-page: 795 year: 1980 ident: 2021042609144414400_DEV146589C94 article-title: Mutations affecting segment number and polarity in Drosophila publication-title: Nature doi: 10.1038/287795a0 – volume: 275 start-page: 1787 year: 1997 ident: 2021042609144414400_DEV146589C87 article-title: Activation of beta -Catenin-Tcf signaling in colon cancer by mutations in beta -catenin or APC publication-title: Science doi: 10.1126/science.275.5307.1787 – volume: 104 start-page: 233 year: 2001 ident: 2021042609144414400_DEV146589C95 article-title: Morphogenesis and renewal of hair follicles from adult multipotent stem cells publication-title: Cell doi: 10.1016/S0092-8674(01)00208-2 – volume: 4 start-page: 2787 year: 2013 ident: 2021042609144414400_DEV146589C140 article-title: Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin publication-title: Nat. Commun. doi: 10.1038/ncomms3787 – volume: 18 start-page: 633 year: 2010 ident: 2021042609144414400_DEV146589C35 article-title: beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.01.016 – volume: 545 start-page: 238 year: 2017 ident: 2021042609144414400_DEV146589C138 article-title: Non-equivalence of Wnt and R-spondin ligands during Lgr5(+) intestinal stem-cell self-renewal publication-title: Nature doi: 10.1038/nature22313 – volume: 16 start-page: 1066 year: 2002 ident: 2021042609144414400_DEV146589C1 article-title: Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway publication-title: Genes Dev. doi: 10.1101/gad.230302 – volume: 70 start-page: 11 year: 2002 ident: 2021042609144414400_DEV146589C75 article-title: A mutation in the LDL receptor–related protein 5 gene results in the autosomal dominant high–bone-mass trait publication-title: Am. J. Hum. Genet. doi: 10.1086/338450 – volume: 8 start-page: 573 year: 1998 ident: 2021042609144414400_DEV146589C50 article-title: Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β publication-title: Curr. Biol. doi: 10.1016/S0960-9822(98)70226-X – volume: 15 start-page: 928 year: 2005 ident: 2021042609144414400_DEV146589C78 article-title: Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease publication-title: Genome Res. doi: 10.1101/gr.3437105 – volume: 169 start-page: 985 year: 2017 ident: 2021042609144414400_DEV146589C93 article-title: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities publication-title: Cell doi: 10.1016/j.cell.2017.05.016 – volume: 6 start-page: 1302 year: 1996 ident: 2021042609144414400_DEV146589C139 article-title: A frizzled homolog functions in a vertebrate Wnt signaling pathway publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)70716-1 – volume: 524 start-page: 180 year: 2015 ident: 2021042609144414400_DEV146589C131 article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver publication-title: Nature doi: 10.1038/nature14863 – volume: 3 start-page: 683 year: 2001 ident: 2021042609144414400_DEV146589C3 article-title: Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow publication-title: Nat. Cell Biol. doi: 10.1038/35083081 – volume: 438 start-page: 873 year: 2005 ident: 2021042609144414400_DEV146589C141 article-title: A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation publication-title: Nature doi: 10.1038/nature04185 – volume: 382 start-page: 638 year: 1996 ident: 2021042609144414400_DEV146589C11 article-title: Functional interaction of β-catenin with the transcription factor LEF-1 publication-title: Nature doi: 10.1038/382638a0 – volume: 10 start-page: 468 year: 2009 ident: 2021042609144414400_DEV146589C144 article-title: Proximal events in Wnt signal transduction publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm2717 – volume: 143 start-page: 1914 year: 2016 ident: 2021042609144414400_DEV146589C89 article-title: Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules publication-title: Development doi: 10.1242/dev.131664 – volume: 382 start-page: 225 year: 1996 ident: 2021042609144414400_DEV146589C13 article-title: A new member of the frizzled family from Drosophila functions as a Wingless receptor publication-title: Nature doi: 10.1038/382225a0 – volume: 32 start-page: 1496 year: 2017 ident: 2021042609144414400_DEV146589C42 article-title: BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized Phase 2a trial publication-title: J. Bone Miner Res. doi: 10.1002/jbmr.3143 – volume: 101 start-page: 8017 year: 2004 ident: 2021042609144414400_DEV146589C111 article-title: Anteriorization of neural fate by inhibitor of beta-catenin and T cell factor (ICAT), a negative regulator of Wnt signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0401733101 – volume: 88 start-page: 757 year: 1997 ident: 2021042609144414400_DEV146589C130 article-title: Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8 publication-title: Cell doi: 10.1016/S0092-8674(00)81922-4 – volume: 19 start-page: 179 year: 2013 ident: 2021042609144414400_DEV146589C8 article-title: WNT signaling in bone homeostasis and disease: from human mutations to treatments publication-title: Nat. Med. doi: 10.1038/nm.3074 – volume: 88 start-page: 747 year: 1997 ident: 2021042609144414400_DEV146589C71 article-title: Frzb-1 is a secreted antagonist of Wnt signaling expressed in the spemann organizer publication-title: Cell doi: 10.1016/S0092-8674(00)81921-2 – volume: 487 start-page: 330 year: 2012 ident: 2021042609144414400_DEV146589C17 article-title: Comprehensive molecular characterization of human colon and rectal cancer publication-title: Nature doi: 10.1038/nature11252 – volume: 391 start-page: 357 year: 1998 ident: 2021042609144414400_DEV146589C40 article-title: Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction publication-title: Nature doi: 10.1038/34848 – volume: 58 start-page: 1075 year: 1989 ident: 2021042609144414400_DEV146589C84 article-title: Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis publication-title: Cell doi: 10.1016/0092-8674(89)90506-0 – volume: 8 start-page: 118 year: 1994 ident: 2021042609144414400_DEV146589C63 article-title: The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal publication-title: Genes Dev. doi: 10.1101/gad.8.1.118 – volume: 395 start-page: 604 year: 1998 ident: 2021042609144414400_DEV146589C19 article-title: Drosophila Tcf and Groucho interact to repress Wingless signalling activity publication-title: Nature doi: 10.1038/26982 – volume: 4 start-page: a007880 year: 2012 ident: 2021042609144414400_DEV146589C82 article-title: Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a007880 – volume: 108 start-page: 11452 year: 2011 ident: 2021042609144414400_DEV146589C18 article-title: R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1106083108 – volume: 104 start-page: 15418 year: 2007 ident: 2021042609144414400_DEV146589C66 article-title: Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0707210104 – volume: 113 start-page: E1498 year: 2016 ident: 2021042609144414400_DEV146589C74 article-title: Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1601599113 – volume: 17 start-page: 443 year: 2001 ident: 2021042609144414400_DEV146589C92 article-title: An ancient cluster of Wnt paralogues publication-title: Trends Genet. doi: 10.1016/S0168-9525(01)02349-6 – volume: 337 start-page: 59 year: 2012 ident: 2021042609144414400_DEV146589C57 article-title: Structural basis of Wnt recognition by Frizzled publication-title: Science doi: 10.1126/science.1222879 – volume: 17 start-page: 1709 year: 2003 ident: 2021042609144414400_DEV146589C98 article-title: Canonical Wnt signals are essential for homeostasis of the intestinal epithelium publication-title: Genes Dev. doi: 10.1101/gad.267103 – volume: 11 start-page: 387 year: 2012 ident: 2021042609144414400_DEV146589C123 article-title: Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.023 – volume: 9 start-page: 207 year: 1999 ident: 2021042609144414400_DEV146589C51 article-title: The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80091-8 – volume: 12 start-page: 5293 year: 1993 ident: 2021042609144414400_DEV146589C125 article-title: Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein publication-title: EMBO J. doi: 10.1002/j.1460-2075.1993.tb06225.x – volume: 39 start-page: 91 year: 2002 ident: 2021042609144414400_DEV146589C4 article-title: Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease publication-title: J. Med. Genet. doi: 10.1136/jmg.39.2.91 – volume: 7 start-page: 801 year: 2001 ident: 2021042609144414400_DEV146589C83 article-title: Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00224-6 – volume: 423 start-page: 448 year: 2003 ident: 2021042609144414400_DEV146589C133 article-title: Wnt proteins are lipid-modified and can act as stem cell growth factors publication-title: Nature doi: 10.1038/nature01611 – volume: 86 start-page: 391 year: 1996 ident: 2021042609144414400_DEV146589C85 article-title: XTcf-3 transcription factor mediates β-catenin-induced axis formation in xenopus embryos publication-title: Cell doi: 10.1016/S0092-8674(00)80112-9 – volume: 12 start-page: 1055 year: 2011 ident: 2021042609144414400_DEV146589C41 article-title: LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling publication-title: EMBO Rep. doi: 10.1038/embor.2011.175 – volume: 121 start-page: 4095 year: 1995 ident: 2021042609144414400_DEV146589C67 article-title: Dishevelled is a component of the frizzled signaling pathway in Drosophila publication-title: Development doi: 10.1242/dev.121.12.4095 – volume: 407 start-page: 530 year: 2000 ident: 2021042609144414400_DEV146589C116 article-title: LDL-receptor-related proteins in Wnt signal transduction publication-title: Nature doi: 10.1038/35035117 – volume: 395 start-page: 608 year: 1998 ident: 2021042609144414400_DEV146589C104 article-title: The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors publication-title: Nature doi: 10.1038/26989 – volume: 5 start-page: a007898 year: 2012 ident: 2021042609144414400_DEV146589C114 article-title: The -catenin destruction complex publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a007898 – volume: 16 start-page: 179 year: 2014 ident: 2021042609144414400_DEV146589C72 article-title: In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators publication-title: Nat. Cell Biol. doi: 10.1038/ncb2903 – volume: 530 start-page: 340 year: 2016 ident: 2021042609144414400_DEV146589C36 article-title: Visualization of a short-range Wnt gradient in the intestinal stem-cell niche publication-title: Nature doi: 10.1038/nature16937 – volume: 92 start-page: 3046 year: 1995 ident: 2021042609144414400_DEV146589C88 article-title: Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.92.7.3046 – volume: 15 start-page: 82 year: 2014 ident: 2021042609144414400_DEV146589C145 article-title: Pluripotent stem cells in regenerative medicine: challenges and recent progress publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3563 – volume: 346 start-page: 1513 year: 2002 ident: 2021042609144414400_DEV146589C15 article-title: High bone density due to a mutation in LDL-receptor–related protein 5 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa013444 – volume: 32 start-page: 719 year: 2015 ident: 2021042609144414400_DEV146589C143 article-title: Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.02.014 – volume: 303 start-page: 359 year: 2004 ident: 2021042609144414400_DEV146589C122 article-title: Defining the epithelial stem cell niche in skin publication-title: Science doi: 10.1126/science.1092436 – volume: 15 start-page: 658 year: 2001 ident: 2021042609144414400_DEV146589C105 article-title: Naked cuticle targets dishevelled to antagonize Wnt signal transduction publication-title: Genes Dev. doi: 10.1101/gad.869201 – volume: 40 start-page: 1291 year: 2008 ident: 2021042609144414400_DEV146589C56 article-title: Lgr5 marks cycling, yet long-lived, hair follicle stem cells publication-title: Nat. Genet. doi: 10.1038/ng.239 – volume: 3 start-page: e01998 year: 2014 ident: 2021042609144414400_DEV146589C115 article-title: Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6 publication-title: Elife doi: 10.7554/eLife.01998 – volume: 2 start-page: 643 year: 2002 ident: 2021042609144414400_DEV146589C2 article-title: WNT signals are required for the initiation of hair follicle development publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00167-3 – volume: 137 start-page: 845 year: 2010 ident: 2021042609144414400_DEV146589C91 article-title: On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes publication-title: Development doi: 10.1242/dev.039651 – volume: 21 start-page: 848 year: 2011 ident: 2021042609144414400_DEV146589C20 article-title: Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.09.007 – volume: 88 start-page: 789 year: 1997 ident: 2021042609144414400_DEV146589C124 article-title: Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF publication-title: Cell doi: 10.1016/S0092-8674(00)81925-X – volume: 8 start-page: 727 year: 2005 ident: 2021042609144414400_DEV146589C53 article-title: Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes publication-title: Dev. Cell doi: 10.1016/j.devcel.2005.02.013 – volume: 13 start-page: 1070 year: 2011 ident: 2021042609144414400_DEV146589C120 article-title: Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2314 – volume: 4 start-page: 487 year: 2009 ident: 2021042609144414400_DEV146589C90 article-title: Naive and primed pluripotent states publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.015 – volume: 244 start-page: 507 year: 2015 ident: 2021042609144414400_DEV146589C48 article-title: Vertebrate nervous system posteriorization: Grading the function of Wnt signaling publication-title: Dev. Dyn. doi: 10.1002/dvdy.24230 – volume: 272 start-page: 1023 year: 1996 ident: 2021042609144414400_DEV146589C107 article-title: Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly publication-title: Science doi: 10.1126/science.272.5264.1023 – volume: 19 start-page: 379 year: 1998 ident: 2021042609144414400_DEV146589C65 article-title: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 publication-title: Nat. Genet. doi: 10.1038/1270 – volume: 68 start-page: 577 year: 2001 ident: 2021042609144414400_DEV146589C16 article-title: Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein publication-title: Am. J. Hum. Genet. doi: 10.1086/318811 – volume: 1 start-page: e10 year: 2003 ident: 2021042609144414400_DEV146589C70 article-title: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0000010 – volume: 50 start-page: 649 year: 1987 ident: 2021042609144414400_DEV146589C103 article-title: The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless publication-title: Cell doi: 10.1016/0092-8674(87)90038-9 – volume: 27 start-page: 7551 year: 2007 ident: 2021042609144414400_DEV146589C37 article-title: Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01034-07 – volume: 459 start-page: 262 year: 2009 ident: 2021042609144414400_DEV146589C110 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature doi: 10.1038/nature07935 – volume: 149 start-page: 1174 year: 2012 ident: 2021042609144414400_DEV146589C135 article-title: SnapShot: directed differentiation of pluripotent stem cells publication-title: Cell doi: 10.1016/j.cell.2012.05.015 – volume: 4 start-page: 155 year: 2009 ident: 2021042609144414400_DEV146589C47 article-title: A two-step mechanism for stem cell activation during hair regeneration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.12.009 – volume: 22 start-page: 1172 year: 2002 ident: 2021042609144414400_DEV146589C59 article-title: Wnt/ -catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.4.1172-1183.2002 – volume: 8 start-page: 739 year: 2005 ident: 2021042609144414400_DEV146589C32 article-title: Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2005.03.016 – volume: 398 start-page: 431 year: 1999 ident: 2021042609144414400_DEV146589C54 article-title: A new secreted protein that binds to Wnt proteins and inhibits their activities publication-title: Nature doi: 10.1038/18899 – volume: 377 start-page: 1417 year: 2017 ident: 2021042609144414400_DEV146589C108 article-title: Romosozumab or alendronate for fracture prevention in women with osteoporosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1708322 – volume: 262 start-page: 1731 year: 1993 ident: 2021042609144414400_DEV146589C106 article-title: Association of the APC gene product with beta-catenin publication-title: Science doi: 10.1126/science.8259518 – volume: 48 start-page: 461 year: 1976 ident: 2021042609144414400_DEV146589C113 article-title: Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster publication-title: Dev. Biol. doi: 10.1016/0012-1606(76)90108-1 – volume: 102 start-page: 3324 year: 2005 ident: 2021042609144414400_DEV146589C12 article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0408742102 – volume: 36 start-page: 872 year: 2009 ident: 2021042609144414400_DEV146589C43 article-title: Evidence that fold-change, and not absolute level, of β-catenin dictates Wnt signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.11.017 – volume: 485 start-page: 195 year: 2012 ident: 2021042609144414400_DEV146589C49 article-title: ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner publication-title: Nature doi: 10.1038/nature11019 – volume: 141 start-page: 2206 year: 2014 ident: 2021042609144414400_DEV146589C60 article-title: Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts publication-title: Development doi: 10.1242/dev.104976 – volume: 140 start-page: 2961 year: 2013 ident: 2021042609144414400_DEV146589C14 article-title: Porcn-dependent Wnt signaling is not required prior to mouse gastrulation publication-title: Development doi: 10.1242/dev.094458 – volume: 102 start-page: 26 year: 2017 ident: 2021042609144414400_DEV146589C134 article-title: LRP5: From bedside to bench to bone publication-title: Bone doi: 10.1016/j.bone.2017.03.044 – volume: 133 start-page: 4901 year: 2006 ident: 2021042609144414400_DEV146589C46 article-title: Sprinter: a novel transmembrane protein required for Wg secretion and signaling publication-title: Development doi: 10.1242/dev.02674 – volume: 13 start-page: 270 year: 1999 ident: 2021042609144414400_DEV146589C136 article-title: The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro publication-title: Genes Dev. doi: 10.1101/gad.13.3.270 – volume: 27 start-page: 1345 year: 2013 ident: 2021042609144414400_DEV146589C21 article-title: The structural basis of R-spondin recognition by LGR5 and RNF43 publication-title: Genes Dev. doi: 10.1101/gad.219915.113 – volume: 132 start-page: 628 year: 2007 ident: 2021042609144414400_DEV146589C126 article-title: The intestinal Wnt/TCF signature publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.08.039 – volume: 476 start-page: 293 year: 2011 ident: 2021042609144414400_DEV146589C33 article-title: Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling publication-title: Nature doi: 10.1038/nature10337 – volume: 17 start-page: 1219 year: 2003 ident: 2021042609144414400_DEV146589C127 article-title: Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice publication-title: Genes Dev. doi: 10.1101/gad.1076103 – volume: 20 start-page: 536 year: 1998 ident: 2021042609144414400_DEV146589C86 article-title: From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus publication-title: BioEssays doi: 10.1002/(SICI)1521-1878(199807)20:7<536::AID-BIES4>3.0.CO;2-I – volume: 6 start-page: 25 year: 2010 ident: 2021042609144414400_DEV146589C7 article-title: Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.11.013 – volume: 131 start-page: 5103 year: 2004 ident: 2021042609144414400_DEV146589C25 article-title: Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP publication-title: Development doi: 10.1242/dev.01318 – volume: 4 start-page: 114 year: 2015 ident: 2021042609144414400_DEV146589C68 article-title: Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2014.11.007 – volume: 545 start-page: 234 year: 2017 ident: 2021042609144414400_DEV146589C58 article-title: Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling publication-title: Nature doi: 10.1038/nature22306 – volume: 120 start-page: 857 year: 2005 ident: 2021042609144414400_DEV146589C118 article-title: Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos publication-title: Cell doi: 10.1016/j.cell.2005.01.013 – volume: 25 start-page: 4371 year: 2005 ident: 2021042609144414400_DEV146589C22 article-title: Mouse axin and axin2/conductin proteins are functionally equivalent in vivo publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.11.4371-4376.2005 – volume: 113 start-page: E6382 year: 2016 ident: 2021042609144414400_DEV146589C137 article-title: Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1613849113 – volume: 67 start-page: 181 year: 2017 ident: 2021042609144414400_DEV146589C38 article-title: Wnt-dependent inactivation of the groucho/TLE co-repressor by the HECT E3 ubiquitin ligase Hyd/UBR5 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.009 – volume: 287 start-page: 34167 year: 2012 ident: 2021042609144414400_DEV146589C100 article-title: Precise regulation of porcupine activity is required for physiological Wnt signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.381970 – volume: 6 start-page: e18650 year: 2011 ident: 2021042609144414400_DEV146589C128 article-title: Naked1 antagonizes Wnt signaling by preventing nuclear accumulation of β-catenin publication-title: PLoS One doi: 10.1371/journal.pone.0018650 – volume: 346 start-page: 1248012 year: 2014 ident: 2021042609144414400_DEV146589C24 article-title: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control publication-title: Science doi: 10.1126/science.1248012 |
SSID | ssj0003677 |
Score | 2.6856883 |
SecondaryResourceType | review_article |
Snippet | The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | dev146589 |
SubjectTerms | Cancer Cell interactions Cell proliferation Cell signaling Embryogenesis Homeostasis Regenerative medicine Signal transduction Stem cells Wnt protein β-Catenin |
Title | Wnt signaling in development and tissue homeostasis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29884654 https://www.proquest.com/docview/2054084054 https://www.proquest.com/docview/2052804054 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4CMSlKo-WLQ8F0UuFAomdeLNHVEDQCi6AQFwiO5kIJJogNhzaX89M7DihbCXKJYoce534846_sefB2FeK2QZCDP0ghtwnAu-rQgW-EsGoCBOIICdv5NMzeXwZ_biOr7tsb413Sa13sz8T_UregyqWIa7kJfsfyLofxQK8R3zxigjj9U0YX5X1DhlgqHvrmZJ3JkDGNLIZ1p3b6hdUSAPHd-M-Ge0ZDDWHua37Vm934JySYd4q49dzo8hHy-3B79OG4NiZiil7QG-3EMKkM3Vye4EBWZyYIjCSMKKz3dB22IpKE_qxnRPhRBmMiz4OHH4wSeHYJAh6Gej6rwXImQWSQoKtU2ybmrbTbJYj_6fUFAcnP90SK2STUtO9t407i233un5fMo1_qA8Njbj4yD5Y_u_tGzAX2RSUS2zOZAT9vcTmT62tAxbeVE3hMhOIs-dw9u5Kr4ezhzh7Bmevh_MKuzw6vPh-7NtkF36GpKn2IUwKyMIkiZQKcgiFhoKD4rHQOi54LnFpAZmHSkmZCRFribolaJS_xLkKJT6xmbIqYZV5QzXMuNIQyRw5Cg9GySgWRQai0BF2lg_Yt3Zg0sxGgqeEJPfpawAGbNvVfTDxTybWWm_HN7X_j3HKSRtIUCGIBmzLPUbpRUdSOCerp6YOTwJT57PBxXXDRzgYMo6-vOkV1thCN7XX2Uz9-AQbyBdrvdnMnWePrWmh |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wnt+signaling+in+development+and+tissue+homeostasis&rft.jtitle=Development+%28Cambridge%29&rft.au=Steinhart%2C+Zachary&rft.au=Angers%2C+Stephane&rft.date=2018-06-01&rft.issn=0950-1991&rft.eissn=1477-9129&rft.volume=145&rft.issue=11&rft_id=info:doi/10.1242%2Fdev.146589&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_146589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |