Wnt signaling in development and tissue homeostasis

The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 145; no. 11; p. dev146589
Main Authors Steinhart, Zachary, Angers, Stephane
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Ltd 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis.
AbstractList The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis.The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis.
The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis.Summary: An overview of Wnt-β-catenin signaling highlighting its key functions during development and adult tissue homeostasis.
The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation and cell differentiation both during embryogenesis and during adult tissue homeostasis. Genetic or epigenetic events leading to hypo- or hyper-activation of the Wnt-β-catenin signaling cascade have also been associated with human diseases such as cancer. Understanding how this pathway functions is thus integral for developing therapies to treat diseases or for regenerative medicine approaches. Here, and in the accompanying poster, we provide an overview of Wnt-β-catenin signaling and briefly highlight its key functions during development and adult tissue homeostasis.
Author Angers, Stephane
Steinhart, Zachary
Author_xml – sequence: 1
  givenname: Zachary
  surname: Steinhart
  fullname: Steinhart, Zachary
  organization: University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
– sequence: 2
  givenname: Stephane
  orcidid: 0000-0001-7241-9044
  surname: Angers
  fullname: Angers, Stephane
  organization: University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29884654$$D View this record in MEDLINE/PubMed
BookMark eNpt0MtKxDAUBuAgI85FNz6AFNyI0DHXNlnK4A0G3CguS9qejhnaZGxSYd7e6IwuBldZnO8_h_xTNLLOAkLnBM8J5fSmhs854ZmQ6ghNCM_zVBGqRmiClcApUYqM0dT7NcaYZXl-gsZUSRkDfILYmw2JNyurW2NXibFJ3Aat23QQB9rWSTDeD5C8uw6cD9obf4qOG916ONu_M_R6f_eyeEyXzw9Pi9tlWjFJQgpENlCReElrXANhJTQUNBWsLEVD64wSBVlNtM6yijFRZkJgKLmUMS4bzWboard307uPAXwoOuMraFttwQ2-oFhQiTkWPNLLA7p2Qx8_9aM4lnt1sVdD2UFdbHrT6X5b_NYRwfUOVL3zvofmjxBcfHddxHaKXdcR4wNcmaCDcTb02rT_Rb4A_Y5_9Q
CitedBy_id crossref_primary_10_1080_14728222_2021_1992386
crossref_primary_10_1016_j_ijbiomac_2024_129634
crossref_primary_10_1038_s12276_024_01381_1
crossref_primary_10_1093_biolre_ioz030
crossref_primary_10_1126_sciadv_aaw3896
crossref_primary_10_14814_phy2_15232
crossref_primary_10_3389_fendo_2020_00631
crossref_primary_10_1186_s12935_023_03113_3
crossref_primary_10_1038_s41598_022_25315_x
crossref_primary_10_1038_s41467_022_35487_9
crossref_primary_10_1242_jcs_244186
crossref_primary_10_3390_cancers13215532
crossref_primary_10_1016_j_ecoenv_2024_115948
crossref_primary_10_3389_fphys_2021_730196
crossref_primary_10_1097_BOR_0000000000000841
crossref_primary_10_3389_fcell_2021_740783
crossref_primary_10_3892_etm_2019_7991
crossref_primary_10_1038_s41467_025_57165_2
crossref_primary_10_1016_j_gene_2024_148967
crossref_primary_10_3724_abbs_2023032
crossref_primary_10_3389_fcell_2020_00734
crossref_primary_10_1007_s00109_019_01870_1
crossref_primary_10_1242_dev_194407
crossref_primary_10_1038_s41368_024_00279_y
crossref_primary_10_1038_s41419_021_03786_6
crossref_primary_10_1111_gtc_13147
crossref_primary_10_1111_febs_17336
crossref_primary_10_3389_fimmu_2025_1553093
crossref_primary_10_3390_ijms25147846
crossref_primary_10_1093_jmcb_mjac038
crossref_primary_10_18632_aging_203778
crossref_primary_10_1016_j_jgr_2022_11_002
crossref_primary_10_1016_j_semcdb_2021_11_020
crossref_primary_10_3389_fcell_2023_1174579
crossref_primary_10_3389_fnmol_2020_00117
crossref_primary_10_3390_biomedicines11102675
crossref_primary_10_1002_mgg3_2067
crossref_primary_10_1186_s40478_019_0871_7
crossref_primary_10_1038_s41467_021_24004_z
crossref_primary_10_1002_cbin_11797
crossref_primary_10_1007_s10142_022_00849_5
crossref_primary_10_3390_ijms21165940
crossref_primary_10_1016_j_celrep_2020_107973
crossref_primary_10_1016_j_toxrep_2020_08_020
crossref_primary_10_3390_ijms23158676
crossref_primary_10_1080_10408398_2021_1879001
crossref_primary_10_3389_fcell_2018_00167
crossref_primary_10_1016_j_anireprosci_2023_107395
crossref_primary_10_3390_ijms21239107
crossref_primary_10_12677_ACM_2023_133431
crossref_primary_10_1186_s12915_024_01873_6
crossref_primary_10_3389_fcell_2021_750382
crossref_primary_10_1124_mol_119_117986
crossref_primary_10_1172_JCI171222
crossref_primary_10_1002_fft2_439
crossref_primary_10_3389_fendo_2021_664557
crossref_primary_10_1055_s_0041_1740348
crossref_primary_10_1111_jre_13199
crossref_primary_10_2139_ssrn_3989797
crossref_primary_10_3390_md21120622
crossref_primary_10_1002_1878_0261_13520
crossref_primary_10_2108_zs230050
crossref_primary_10_1177_1535370220901683
crossref_primary_10_1093_sleepadvances_zpad045
crossref_primary_10_4103_1673_5374_276320
crossref_primary_10_1016_j_semcdb_2021_10_001
crossref_primary_10_1002_JLB_3RI0721_385R
crossref_primary_10_1002_fsn3_3405
crossref_primary_10_1002_gcc_22700
crossref_primary_10_1007_s12308_024_00597_4
crossref_primary_10_1038_s41598_021_89060_3
crossref_primary_10_1007_s00439_024_02659_0
crossref_primary_10_3389_fcell_2020_618652
crossref_primary_10_1038_s41578_018_0066_z
crossref_primary_10_3390_ijms252313151
crossref_primary_10_1007_s13659_024_00443_1
crossref_primary_10_1371_journal_pbio_3001581
crossref_primary_10_1007_s00216_023_04746_z
crossref_primary_10_1016_j_biopha_2023_115824
crossref_primary_10_3390_cells14030178
crossref_primary_10_3390_cancers13112734
crossref_primary_10_1002_cam4_70530
crossref_primary_10_3390_ijms21239203
crossref_primary_10_3390_ijms24087616
crossref_primary_10_1016_j_jbc_2023_105248
crossref_primary_10_1016_j_xcrm_2024_101659
crossref_primary_10_4251_wjgo_v11_i8_589
crossref_primary_10_1038_s41416_021_01352_7
crossref_primary_10_3389_fphar_2022_1073392
crossref_primary_10_1016_j_celrep_2022_110442
crossref_primary_10_1016_j_gendis_2022_07_011
crossref_primary_10_3389_fphar_2019_01110
crossref_primary_10_1016_j_isci_2025_111832
crossref_primary_10_1080_00071668_2021_1963676
crossref_primary_10_1242_jcs_259405
crossref_primary_10_3390_life11090988
crossref_primary_10_1242_dev_201352
crossref_primary_10_3390_ijms222212105
crossref_primary_10_1007_s00018_022_04295_1
crossref_primary_10_1038_s41580_024_00823_y
crossref_primary_10_3390_ijms21113790
crossref_primary_10_3390_ijms232012210
crossref_primary_10_1186_s12943_022_01616_7
crossref_primary_10_1016_j_celrep_2022_110461
crossref_primary_10_1080_21655979_2023_2251696
crossref_primary_10_1093_hmg_ddac026
crossref_primary_10_3390_ijms22052430
crossref_primary_10_3390_biom12020309
crossref_primary_10_3390_diagnostics14192161
crossref_primary_10_1007_s10555_020_09887_6
crossref_primary_10_1158_2767_9764_CRC_22_0027
crossref_primary_10_3390_cancers15072088
crossref_primary_10_1016_j_jbc_2022_101986
crossref_primary_10_3390_biom14080919
crossref_primary_10_3390_cells13090775
crossref_primary_10_3390_cells13070608
crossref_primary_10_3389_fcell_2022_944673
crossref_primary_10_3390_ijms23147500
crossref_primary_10_7554_eLife_93908_3
crossref_primary_10_1016_j_advms_2022_01_001
crossref_primary_10_1073_pnas_2104944118
crossref_primary_10_4155_ppa_2022_0037
crossref_primary_10_1038_s41418_020_00632_8
crossref_primary_10_1186_s43166_021_00088_9
crossref_primary_10_3390_curroncol28040230
crossref_primary_10_5812_gct_110381
crossref_primary_10_1002_bdr2_2244
crossref_primary_10_7554_eLife_46134
crossref_primary_10_1098_rsob_180158
crossref_primary_10_3390_biomedicines10051131
crossref_primary_10_3389_fonc_2022_871788
crossref_primary_10_1038_s41467_024_46023_2
crossref_primary_10_7717_peerj_15123
crossref_primary_10_1146_annurev_biophys_052118_115534
crossref_primary_10_1016_j_tibs_2021_07_008
crossref_primary_10_1038_s41392_024_02070_1
crossref_primary_10_1038_s41467_023_44338_0
crossref_primary_10_1038_s41418_020_0575_3
crossref_primary_10_3389_fendo_2023_1122351
crossref_primary_10_1158_1541_7786_MCR_24_0880
crossref_primary_10_1186_s12885_022_09898_2
crossref_primary_10_3389_fbioe_2022_981062
crossref_primary_10_1016_j_meatsci_2023_109116
crossref_primary_10_3389_fmicb_2020_01998
crossref_primary_10_1186_s12964_020_00544_7
crossref_primary_10_1242_dev_175604
crossref_primary_10_3390_ijms231911434
crossref_primary_10_3389_fonc_2020_603702
crossref_primary_10_1016_j_jep_2024_119270
crossref_primary_10_1016_j_stemcr_2024_102391
crossref_primary_10_1038_s41420_022_00962_1
crossref_primary_10_1016_j_gendis_2023_03_031
crossref_primary_10_3389_fvets_2023_1324647
crossref_primary_10_1126_sciadv_abm3108
crossref_primary_10_3748_wjg_v26_i26_3750
crossref_primary_10_3390_cells12151973
crossref_primary_10_1016_j_labinv_2023_100228
crossref_primary_10_3389_fimmu_2019_02521
crossref_primary_10_1016_j_cellsig_2020_109648
crossref_primary_10_1096_fj_202201733RRR
crossref_primary_10_3389_fphar_2022_842101
crossref_primary_10_1016_j_ajhg_2024_07_016
crossref_primary_10_1007_s10571_024_01512_2
crossref_primary_10_1096_fj_201902767R
crossref_primary_10_1038_s41422_020_00411_7
crossref_primary_10_1186_s13578_022_00857_9
crossref_primary_10_1242_dev_202649
crossref_primary_10_7554_eLife_93908
crossref_primary_10_1007_s12094_022_02944_2
crossref_primary_10_3390_jdb12030020
crossref_primary_10_1126_sciadv_adq0638
crossref_primary_10_3390_ijms24087084
crossref_primary_10_3389_fphar_2022_919967
crossref_primary_10_1002_cam4_4228
crossref_primary_10_1007_s11010_023_04738_8
crossref_primary_10_1186_s12931_023_02512_4
crossref_primary_10_3389_fonc_2022_943683
crossref_primary_10_1016_j_bbadis_2023_166907
crossref_primary_10_1186_s13287_023_03571_6
crossref_primary_10_1242_jcs_259972
crossref_primary_10_1056_NEJMoa2033911
crossref_primary_10_1016_j_ijbiomac_2023_124155
crossref_primary_10_1186_s13287_023_03289_5
crossref_primary_10_1016_j_bbamcr_2020_118926
crossref_primary_10_1038_s41580_022_00472_z
crossref_primary_10_1073_pnas_1911071116
crossref_primary_10_1242_dmm_047357
crossref_primary_10_3390_ijms25073912
crossref_primary_10_1038_s41574_020_00426_5
crossref_primary_10_1016_j_mad_2022_111741
crossref_primary_10_3389_fcell_2021_714746
crossref_primary_10_1002_bies_202000297
crossref_primary_10_2174_1566523223666230601102506
crossref_primary_10_1016_j_celrep_2024_114807
crossref_primary_10_1093_bioinformatics_btab240
crossref_primary_10_1371_journal_pone_0301082
crossref_primary_10_3390_cells11030460
crossref_primary_10_1016_j_ejphar_2023_176058
crossref_primary_10_1155_2020_5823676
crossref_primary_10_3389_fcell_2021_631623
crossref_primary_10_1007_s11626_024_00858_7
crossref_primary_10_1002_cbin_11264
crossref_primary_10_1016_j_cbpc_2024_109957
crossref_primary_10_4103_IJO_IJO_1120_24
crossref_primary_10_3389_fonc_2023_1120828
crossref_primary_10_1007_s10142_025_01571_8
crossref_primary_10_1016_j_ijbiomac_2025_141397
crossref_primary_10_3389_fphys_2023_1198873
crossref_primary_10_3390_cells12030447
crossref_primary_10_1016_j_ejphar_2024_177137
crossref_primary_10_1038_s41598_024_56661_7
crossref_primary_10_1042_BSR20222429
crossref_primary_10_1016_j_stemcr_2019_12_006
crossref_primary_10_1016_j_bonr_2024_101780
crossref_primary_10_2147_IJN_S373777
crossref_primary_10_3168_jdsc_2024_0702
crossref_primary_10_1371_journal_pcbi_1009227
crossref_primary_10_1016_j_heliyon_2023_e22382
crossref_primary_10_1016_j_tips_2024_03_003
crossref_primary_10_17925_EE_2021_17_2_121
crossref_primary_10_1089_thy_2019_0828
crossref_primary_10_1080_09553002_2023_2277372
crossref_primary_10_1038_s12276_023_01044_7
crossref_primary_10_7554_eLife_91648
crossref_primary_10_1007_s12035_024_04448_2
crossref_primary_10_1080_15257770_2022_2148692
crossref_primary_10_3390_cancers12092696
crossref_primary_10_1038_s41419_023_05747_7
crossref_primary_10_1126_sciadv_abl5613
crossref_primary_10_3390_ijms241411742
crossref_primary_10_1093_sxmrev_qeae006
crossref_primary_10_1182_bloodadvances_2022008405
crossref_primary_10_1038_d41586_019_02376_z
crossref_primary_10_3390_cells9081784
crossref_primary_10_1002_jsp2_1254
crossref_primary_10_1038_s41380_024_02482_z
crossref_primary_10_1021_acssensors_4c00806
crossref_primary_10_1021_acsomega_3c03605
crossref_primary_10_15252_embr_202255873
crossref_primary_10_3390_ijms222111647
crossref_primary_10_3390_ijms21176320
crossref_primary_10_1093_jas_skac091
crossref_primary_10_1016_j_taap_2022_115968
crossref_primary_10_3390_toxics13010063
crossref_primary_10_12677_ACM_2023_1351106
crossref_primary_10_3724_abbs_2023096
crossref_primary_10_1038_s41556_022_00910_2
crossref_primary_10_1083_jcb_201903017
crossref_primary_10_1111_jcmm_15667
crossref_primary_10_3390_ijms21113927
crossref_primary_10_1248_bpb_b22_00393
crossref_primary_10_1111_wrr_12943
crossref_primary_10_1080_21655979_2021_2009974
crossref_primary_10_1038_s41418_020_00697_5
crossref_primary_10_1042_BCJ20210043
crossref_primary_10_1073_pnas_2005395117
crossref_primary_10_1186_s12860_019_0208_1
crossref_primary_10_1016_j_freeradbiomed_2023_11_030
crossref_primary_10_1016_j_trecan_2020_09_006
crossref_primary_10_1007_s10439_020_02498_w
crossref_primary_10_3389_fcell_2022_837827
crossref_primary_10_1016_j_envres_2024_118752
crossref_primary_10_1007_s12035_023_03731_y
crossref_primary_10_3389_fmars_2020_00471
crossref_primary_10_1016_j_arteri_2019_03_008
crossref_primary_10_1016_j_tice_2022_101750
crossref_primary_10_1038_s41467_021_24731_3
crossref_primary_10_3389_fcell_2025_1522705
crossref_primary_10_1073_pnas_2108408119
crossref_primary_10_3390_cancers14020403
crossref_primary_10_1016_j_gene_2024_148175
crossref_primary_10_1111_jfbc_13886
crossref_primary_10_1016_j_pharmthera_2021_107881
crossref_primary_10_1038_s41594_022_00838_z
crossref_primary_10_3390_cells8101173
crossref_primary_10_1016_j_bone_2023_116933
crossref_primary_10_2174_1874467212666190304121131
crossref_primary_10_1111_ics_13005
crossref_primary_10_1080_19420862_2024_2435478
crossref_primary_10_1080_15592294_2021_1899887
crossref_primary_10_1186_s13040_020_00217_8
crossref_primary_10_1007_s00210_023_02668_2
crossref_primary_10_3390_ijms21113904
crossref_primary_10_1242_jcs_245845
crossref_primary_10_1021_acscentsci_2c00836
crossref_primary_10_2147_CMAR_S241519
crossref_primary_10_1002_jgm_3136
crossref_primary_10_1038_s41598_019_54741_7
crossref_primary_10_1186_s12967_018_1645_x
crossref_primary_10_1016_j_cellsig_2022_110585
crossref_primary_10_1021_acsptsci_2c00239
crossref_primary_10_1016_j_jbc_2023_105615
crossref_primary_10_1038_s41598_023_35719_y
crossref_primary_10_1186_s13059_024_03205_x
crossref_primary_10_1016_j_bbadis_2024_167550
crossref_primary_10_1007_s00018_023_05099_7
crossref_primary_10_1007_s00018_024_05510_x
crossref_primary_10_3390_cells12182303
crossref_primary_10_1210_jendso_bvac121
crossref_primary_10_3389_fcell_2021_667765
crossref_primary_10_3389_fmed_2023_1164656
crossref_primary_10_1073_pnas_2300606121
crossref_primary_10_1186_s12915_020_00883_4
crossref_primary_10_1111_jgh_15937
crossref_primary_10_1002_hed_26888
crossref_primary_10_1590_1806_9282_20221496
crossref_primary_10_3390_ijms242316605
crossref_primary_10_1038_s41467_022_28139_5
crossref_primary_10_3390_genes11101228
crossref_primary_10_1016_j_celrep_2022_110821
crossref_primary_10_1142_S0192415X23500210
crossref_primary_10_1016_j_jare_2023_12_016
crossref_primary_10_3390_ijms22083863
crossref_primary_10_3389_fgene_2021_648158
crossref_primary_10_1016_j_ejphar_2025_177333
crossref_primary_10_1038_s41580_021_00448_5
crossref_primary_10_1007_s11926_019_0822_0
crossref_primary_10_3390_biomedicines12081730
crossref_primary_10_1186_s12964_022_00840_4
crossref_primary_10_1016_j_nbd_2023_106250
crossref_primary_10_3390_ijms21155455
crossref_primary_10_3389_fcell_2022_947337
crossref_primary_10_3390_biom11010100
crossref_primary_10_1002_ptr_7307
crossref_primary_10_1007_s11427_023_2521_x
crossref_primary_10_1002_wsbm_1520
crossref_primary_10_1038_s41467_020_15332_7
crossref_primary_10_1016_j_cellsig_2022_110484
crossref_primary_10_1146_annurev_biochem_040320_103615
crossref_primary_10_1002_cai2_139
crossref_primary_10_3389_fphar_2020_580884
crossref_primary_10_1016_j_phrs_2024_107565
crossref_primary_10_7554_eLife_54469
crossref_primary_10_1002_stem_3289
crossref_primary_10_1007_s11064_022_03545_9
crossref_primary_10_1016_j_isci_2023_106233
crossref_primary_10_3390_vision7020043
crossref_primary_10_3892_etm_2021_10310
crossref_primary_10_1016_j_aninu_2021_06_001
crossref_primary_10_3390_ijms23063317
crossref_primary_10_1080_01902148_2022_2115166
crossref_primary_10_1080_0886022X_2022_2030360
crossref_primary_10_3390_biomedicines10040827
crossref_primary_10_3390_neuroglia5040028
crossref_primary_10_1002_jcp_29907
crossref_primary_10_1016_j_biomaterials_2022_121431
crossref_primary_10_1098_rsob_200041
crossref_primary_10_1002_jbmr_3975
crossref_primary_10_1186_s12935_022_02663_2
crossref_primary_10_3389_ftox_2021_806311
crossref_primary_10_3390_cells12182209
crossref_primary_10_1186_s13053_023_00260_6
crossref_primary_10_1038_s41413_024_00342_8
crossref_primary_10_3390_membranes11110844
crossref_primary_10_1039_D4TB00624K
crossref_primary_10_5483_BMBRep_2020_53_8_268
crossref_primary_10_3103_S0096392521040064
crossref_primary_10_3390_ijms23105319
crossref_primary_10_1155_2022_5338956
crossref_primary_10_3892_or_2023_8609
crossref_primary_10_3324_haematol_2020_266155
crossref_primary_10_1016_j_drudis_2021_07_007
crossref_primary_10_1097_MOP_0000000000001173
crossref_primary_10_3389_fcell_2020_588370
crossref_primary_10_3389_fimmu_2023_1247330
crossref_primary_10_1007_s40495_023_00333_z
crossref_primary_10_1186_s13046_020_01784_8
crossref_primary_10_1016_j_cbpc_2023_109823
crossref_primary_10_3390_ijms25084548
crossref_primary_10_1038_s41598_020_64008_1
crossref_primary_10_2174_0113816128308454240823074555
crossref_primary_10_3892_ol_2024_14743
crossref_primary_10_1007_s40778_019_00166_x
crossref_primary_10_3390_ijms22158182
crossref_primary_10_32604_or_2022_026776
crossref_primary_10_3389_fendo_2022_910964
crossref_primary_10_2174_0113892010289575240306033011
crossref_primary_10_1016_j_molcel_2021_07_013
crossref_primary_10_3389_fendo_2022_922825
crossref_primary_10_1021_acs_analchem_3c00633
crossref_primary_10_1016_j_isci_2023_107309
crossref_primary_10_1126_sciadv_ade1792
crossref_primary_10_1007_s10792_022_02566_1
crossref_primary_10_3389_fphys_2023_1191965
crossref_primary_10_3892_mco_2024_2779
crossref_primary_10_1126_sciadv_adh7748
crossref_primary_10_3390_ijms24044106
crossref_primary_10_1016_j_celrep_2022_110902
crossref_primary_10_1083_jcb_202205069
crossref_primary_10_1007_s40572_022_00385_1
crossref_primary_10_1016_j_snb_2023_134145
crossref_primary_10_1016_j_biochi_2022_04_003
crossref_primary_10_1038_s41514_024_00149_1
crossref_primary_10_1021_acs_jmedchem_2c01016
crossref_primary_10_4252_wjsc_v14_i3_219
crossref_primary_10_1016_j_jacbts_2021_09_011
crossref_primary_10_1016_j_artere_2019_03_008
crossref_primary_10_7554_eLife_91648_4
crossref_primary_10_1002_pmic_202200460
crossref_primary_10_1371_journal_pgen_1009469
crossref_primary_10_3389_fmolb_2021_703110
crossref_primary_10_1016_j_exer_2022_109008
crossref_primary_10_1111_jre_13022
crossref_primary_10_1136_gutjnl_2024_332752
crossref_primary_10_3390_cancers13143446
crossref_primary_10_1007_s10585_024_10292_4
crossref_primary_10_1080_1354750X_2024_2447089
crossref_primary_10_1242_jcs_261241
crossref_primary_10_7554_eLife_65552
crossref_primary_10_1172_jci_insight_159331
crossref_primary_10_3389_fchem_2021_664489
crossref_primary_10_3390_cells11223592
crossref_primary_10_1177_2397847319858563
crossref_primary_10_3390_plants12051147
crossref_primary_10_1038_s41389_021_00354_7
crossref_primary_10_1038_s41598_023_37521_2
crossref_primary_10_1016_j_hbpd_2022_01_003
crossref_primary_10_1093_biolre_ioac128
crossref_primary_10_1093_jas_skab268
crossref_primary_10_1002_bies_202100138
crossref_primary_10_1182_bloodadvances_2021004845
crossref_primary_10_3389_fonc_2020_618515
crossref_primary_10_3390_cancers12123638
crossref_primary_10_1016_j_critrevonc_2022_103595
crossref_primary_10_1016_j_canlet_2024_217297
crossref_primary_10_1016_j_expneurol_2022_114142
crossref_primary_10_2174_1568026623666230303101810
crossref_primary_10_1038_s41598_023_34700_z
crossref_primary_10_3390_cells11193153
crossref_primary_10_2174_0109298673271547231108060805
crossref_primary_10_1016_j_cmet_2019_01_002
crossref_primary_10_3389_fendo_2023_1254977
crossref_primary_10_1016_j_cellsig_2023_110807
crossref_primary_10_3390_ijms22052233
crossref_primary_10_1016_j_bbrc_2022_06_054
crossref_primary_10_1016_j_gendis_2023_06_030
crossref_primary_10_1177_0022034520967353
crossref_primary_10_3390_biomedicines11102719
crossref_primary_10_1016_j_jprot_2022_104489
crossref_primary_10_1021_acschembio_0c00381
crossref_primary_10_1007_s12013_025_01711_8
crossref_primary_10_7554_eLife_64444
crossref_primary_10_1016_j_mcp_2020_101623
crossref_primary_10_4103_aja202377
crossref_primary_10_1155_2022_6993994
crossref_primary_10_3390_ijms24098401
crossref_primary_10_1016_j_jbc_2023_105350
crossref_primary_10_1186_s12981_023_00577_1
crossref_primary_10_1371_journal_pbio_3001947
crossref_primary_10_3389_fcell_2021_623753
crossref_primary_10_1016_j_chembiol_2023_11_006
crossref_primary_10_3350_cmh_2022_0058
crossref_primary_10_1242_jcs_260285
crossref_primary_10_15283_ijsc23070
crossref_primary_10_3892_or_2021_8246
crossref_primary_10_1128_IAI_00094_19
crossref_primary_10_3390_cells11152262
crossref_primary_10_1165_rcmb_2022_0299OC
crossref_primary_10_1016_j_cellsig_2022_110308
crossref_primary_10_1371_journal_pbio_3001619
crossref_primary_10_1126_science_ade6970
crossref_primary_10_1002_jcp_27570
crossref_primary_10_3390_ijms221910306
crossref_primary_10_1007_s13402_021_00591_3
crossref_primary_10_3390_ijms24021575
crossref_primary_10_1007_s11926_022_01092_4
crossref_primary_10_3390_biomedicines11092361
crossref_primary_10_3390_insects14050469
crossref_primary_10_1002_cbin_11812
crossref_primary_10_1007_s10735_018_9808_x
crossref_primary_10_1186_s13008_020_0059_3
crossref_primary_10_1016_j_brainresbull_2020_07_005
crossref_primary_10_1039_D0BM01943G
crossref_primary_10_3389_fonc_2019_00397
crossref_primary_10_1016_j_gendis_2024_101432
crossref_primary_10_1093_bib_bbae436
crossref_primary_10_1124_pharmrev_124_001062
crossref_primary_10_1155_2021_6622439
crossref_primary_10_3389_fimmu_2023_1258074
crossref_primary_10_1038_s41417_023_00682_3
crossref_primary_10_1111_febs_70024
crossref_primary_10_3390_ijms21207697
crossref_primary_10_1016_j_biochi_2023_03_001
crossref_primary_10_1007_s12015_020_10088_5
crossref_primary_10_1016_j_isci_2023_106649
crossref_primary_10_1093_molbev_msad208
crossref_primary_10_1016_j_bbrc_2023_149441
crossref_primary_10_1016_j_fct_2020_111642
crossref_primary_10_1016_j_tox_2022_153408
crossref_primary_10_1038_s41598_022_11596_9
crossref_primary_10_1002_stem_3437
crossref_primary_10_3389_fcell_2021_709823
crossref_primary_10_1016_j_celrep_2022_110851
crossref_primary_10_1096_fj_202001202R
crossref_primary_10_3389_fcell_2021_806181
crossref_primary_10_1038_s42003_020_01386_2
crossref_primary_10_1016_j_psychres_2024_115983
crossref_primary_10_3389_fmed_2024_1448248
crossref_primary_10_1128_spectrum_04827_22
crossref_primary_10_1080_07391102_2019_1696707
crossref_primary_10_1101_gad_321968_118
crossref_primary_10_1186_s13287_022_03205_3
crossref_primary_10_1016_j_preteyeres_2022_101149
crossref_primary_10_1016_j_lfs_2023_121787
crossref_primary_10_1016_j_ctrv_2023_102675
crossref_primary_10_3390_ijms25095047
crossref_primary_10_1007_s11010_024_04938_w
crossref_primary_10_1007_s11033_024_09996_3
crossref_primary_10_1016_j_kint_2022_02_029
crossref_primary_10_1177_1721727X221138857
crossref_primary_10_1111_jcmm_18486
crossref_primary_10_1242_dev_202140
crossref_primary_10_1016_j_bbrep_2023_101499
crossref_primary_10_1186_s12915_024_01845_w
crossref_primary_10_1111_febs_16665
crossref_primary_10_1007_s10555_023_10122_1
crossref_primary_10_3390_cells14010056
crossref_primary_10_1016_j_genrep_2020_100826
crossref_primary_10_1038_s41467_024_55431_3
crossref_primary_10_3389_fcell_2021_667581
Cites_doi 10.1126/science.1239730
10.1038/35035124
10.1038/35035110
10.1016/j.devcel.2009.11.006
10.1128/MCB.22.4.1184-1193.2002
10.1016/S0092-8674(01)00336-1
10.1073/pnas.1114802109
10.1016/S1097-2765(03)00484-2
10.1016/S0960-9822(01)00290-1
10.1101/gad.14.10.1181
10.1126/science.280.5363.596
10.7554/eLife.33126
10.1016/j.cell.2012.04.039
10.1073/pnas.1409857112
10.1038/nm.2388
10.1038/sj.emboj.7600817
10.1016/0092-8674(90)90696-C
10.1038/nature04170
10.1038/sj.onc.1208303
10.1242/jcs.111.21.3179
10.1016/S0092-8674(02)00685-2
10.1242/dev.141507
10.1073/pnas.94.7.2859
10.1038/nm979
10.1073/pnas.1118777109
10.1371/journal.pone.0004046
10.1016/j.cell.2013.07.004
10.1038/nature11308
10.1146/annurev.cellbio.20.010403.113126
10.1038/nature06196
10.1016/S0092-8674(01)00571-2
10.1002/stem.2723
10.1016/j.ydbio.2011.11.003
10.1002/jbmr.2351
10.1016/j.cell.2006.02.049
10.1073/pnas.0803025105
10.1038/nature14259
10.1016/j.cell.2006.04.009
10.1038/ncb2260
10.1038/287795a0
10.1126/science.275.5307.1787
10.1016/S0092-8674(01)00208-2
10.1038/ncomms3787
10.1016/j.devcel.2010.01.016
10.1038/nature22313
10.1101/gad.230302
10.1086/338450
10.1016/S0960-9822(98)70226-X
10.1101/gr.3437105
10.1016/j.cell.2017.05.016
10.1016/S0960-9822(02)70716-1
10.1038/nature14863
10.1038/35083081
10.1038/nature04185
10.1038/382638a0
10.1038/nrm2717
10.1242/dev.131664
10.1038/382225a0
10.1002/jbmr.3143
10.1073/pnas.0401733101
10.1016/S0092-8674(00)81922-4
10.1038/nm.3074
10.1016/S0092-8674(00)81921-2
10.1038/nature11252
10.1038/34848
10.1016/0092-8674(89)90506-0
10.1101/gad.8.1.118
10.1038/26982
10.1101/cshperspect.a007880
10.1073/pnas.1106083108
10.1073/pnas.0707210104
10.1073/pnas.1601599113
10.1016/S0168-9525(01)02349-6
10.1126/science.1222879
10.1101/gad.267103
10.1016/j.stem.2012.05.023
10.1016/S0960-9822(99)80091-8
10.1002/j.1460-2075.1993.tb06225.x
10.1136/jmg.39.2.91
10.1016/S1097-2765(01)00224-6
10.1038/nature01611
10.1016/S0092-8674(00)80112-9
10.1038/embor.2011.175
10.1242/dev.121.12.4095
10.1038/35035117
10.1038/26989
10.1101/cshperspect.a007898
10.1038/ncb2903
10.1038/nature16937
10.1073/pnas.92.7.3046
10.1038/nrg3563
10.1056/NEJMoa013444
10.1016/j.devcel.2015.02.014
10.1126/science.1092436
10.1101/gad.869201
10.1038/ng.239
10.7554/eLife.01998
10.1016/S1534-5807(02)00167-3
10.1242/dev.039651
10.1016/j.devcel.2011.09.007
10.1016/S0092-8674(00)81925-X
10.1016/j.devcel.2005.02.013
10.1038/ncb2314
10.1016/j.stem.2009.05.015
10.1002/dvdy.24230
10.1126/science.272.5264.1023
10.1038/1270
10.1086/318811
10.1371/journal.pbio.0000010
10.1016/0092-8674(87)90038-9
10.1128/MCB.01034-07
10.1038/nature07935
10.1016/j.cell.2012.05.015
10.1016/j.stem.2008.12.009
10.1128/MCB.22.4.1172-1183.2002
10.1016/j.devcel.2005.03.016
10.1038/18899
10.1056/NEJMoa1708322
10.1126/science.8259518
10.1016/0012-1606(76)90108-1
10.1073/pnas.0408742102
10.1016/j.molcel.2009.11.017
10.1038/nature11019
10.1242/dev.104976
10.1242/dev.094458
10.1016/j.bone.2017.03.044
10.1242/dev.02674
10.1101/gad.13.3.270
10.1101/gad.219915.113
10.1053/j.gastro.2006.08.039
10.1038/nature10337
10.1101/gad.1076103
10.1002/(SICI)1521-1878(199807)20:7<536::AID-BIES4>3.0.CO;2-I
10.1016/j.stem.2009.11.013
10.1242/dev.01318
10.1016/j.stemcr.2014.11.007
10.1038/nature22306
10.1016/j.cell.2005.01.013
10.1128/MCB.25.11.4371-4376.2005
10.1073/pnas.1613849113
10.1016/j.molcel.2017.06.009
10.1074/jbc.M112.381970
10.1371/journal.pone.0018650
10.1126/science.1248012
ContentType Journal Article
Copyright 2018. Published by The Company of Biologists Ltd.
Copyright The Company of Biologists Ltd Jun 1, 2018
Copyright_xml – notice: 2018. Published by The Company of Biologists Ltd.
– notice: Copyright The Company of Biologists Ltd Jun 1, 2018
DBID AAYXX
CITATION
NPM
7QP
7SS
7TK
7TM
7U9
8FD
FR3
H94
P64
RC3
7X8
DOI 10.1242/dev.146589
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Entomology Abstracts
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage dev146589
ExternalDocumentID 29884654
10_1242_dev_146589
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: CIHR
  grantid: 364969
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XSW
NPM
7QP
7SS
7TK
7TM
7U9
8FD
FR3
H94
P64
RC3
7X8
ID FETCH-LOGICAL-c381t-e18fec1884aa0de13bef2ea253bb5f2d6219e6d1aa66c335b6550eb4883818fa3
ISSN 0950-1991
1477-9129
IngestDate Tue Aug 05 10:45:20 EDT 2025
Fri Jul 25 04:30:48 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Tue Jul 01 00:45:12 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Wnt protein
Epigenetics
Wnt signaling
Language English
License http://www.biologists.com/user-licence-1-1
2018. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-e18fec1884aa0de13bef2ea253bb5f2d6219e6d1aa66c335b6550eb4883818fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7241-9044
PMID 29884654
PQID 2054084054
PQPubID 2046254
ParticipantIDs proquest_miscellaneous_2052804054
proquest_journals_2054084054
pubmed_primary_29884654
crossref_primary_10_1242_dev_146589
crossref_citationtrail_10_1242_dev_146589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2018
Publisher The Company of Biologists Ltd
Publisher_xml – name: The Company of Biologists Ltd
References Tumbar (2021042609144414400_DEV146589C122) 2004; 303
Barker (2021042609144414400_DEV146589C7) 2010; 6
Nakamura (2021042609144414400_DEV146589C89) 2016; 143
Klingensmith (2021042609144414400_DEV146589C63) 1994; 8
Behrens (2021042609144414400_DEV146589C10) 1998; 280
Janda (2021042609144414400_DEV146589C57) 2012; 337
Hsieh (2021042609144414400_DEV146589C54) 1999; 398
Kurek (2021042609144414400_DEV146589C68) 2015; 4
Proffitt (2021042609144414400_DEV146589C100) 2012; 287
Flack (2021042609144414400_DEV146589C38) 2017; 67
Goentoro (2021042609144414400_DEV146589C43) 2009; 36
Leyns (2021042609144414400_DEV146589C71) 1997; 88
Koo (2021042609144414400_DEV146589C64) 2012; 488
Davidson (2021042609144414400_DEV146589C31) 2012; 109
Carmon (2021042609144414400_DEV146589C18) 2011; 108
Van Mater (2021042609144414400_DEV146589C127) 2003; 17
Van Raay (2021042609144414400_DEV146589C128) 2011; 6
Glinka (2021042609144414400_DEV146589C41) 2011; 12
van de Wetering (2021042609144414400_DEV146589C124) 1997; 88
Logan (2021042609144414400_DEV146589C77) 2004; 20
Davidson (2021042609144414400_DEV146589C30) 2009; 17
Herr (2021042609144414400_DEV146589C52) 2012; 361
Lim (2021042609144414400_DEV146589C73) 2013; 342
Stamos (2021042609144414400_DEV146589C114) 2012; 5
Angers (2021042609144414400_DEV146589C144) 2009; 10
González-Sancho (2021042609144414400_DEV146589C45) 2005; 24
Zebisch (2021042609144414400_DEV146589C140) 2013; 4
Hart (2021042609144414400_DEV146589C50) 1998; 8
Loots (2021042609144414400_DEV146589C78) 2005; 15
Tu (2021042609144414400_DEV146589C121) 2015; 112
Bänziger (2021042609144414400_DEV146589C5) 2006; 125
Andl (2021042609144414400_DEV146589C2) 2002; 2
Cotsarelis (2021042609144414400_DEV146589C26) 1990; 61
Winston (2021042609144414400_DEV146589C136) 1999; 13
Clevers (2021042609144414400_DEV146589C23) 2013; 154
Korinek (2021042609144414400_DEV146589C65) 1998; 19
Kabiri (2021042609144414400_DEV146589C60) 2014; 141
Kishimoto (2021042609144414400_DEV146589C62) 2000; 14
Lebensohn (2021042609144414400_DEV146589C69) 2018; 7
Kosinski (2021042609144414400_DEV146589C66) 2007; 104
Janda (2021042609144414400_DEV146589C58) 2017; 545
Liu (2021042609144414400_DEV146589C76) 2002; 108
Bartscherer (2021042609144414400_DEV146589C9) 2006; 125
Sharma (2021042609144414400_DEV146589C113) 1976; 48
Piao (2021042609144414400_DEV146589C96) 2008; 3
Yang-Snyder (2021042609144414400_DEV146589C139) 1996; 6
Cselenyi (2021042609144414400_DEV146589C27) 2008; 105
Oshima (2021042609144414400_DEV146589C95) 2001; 104
Pinson (2021042609144414400_DEV146589C97) 2000; 407
ten Berge (2021042609144414400_DEV146589C120) 2011; 13
Chen (2021042609144414400_DEV146589C20) 2011; 21
Rubinfeld (2021042609144414400_DEV146589C106) 1993; 262
Niehrs (2021042609144414400_DEV146589C91) 2010; 137
Day (2021042609144414400_DEV146589C32) 2005; 8
Balemans (2021042609144414400_DEV146589C4) 2002; 39
Bhanot (2021042609144414400_DEV146589C13) 1996; 382
Goodman (2021042609144414400_DEV146589C46) 2006; 133
Sato (2021042609144414400_DEV146589C110) 2009; 459
Satoh (2021042609144414400_DEV146589C111) 2004; 101
Kakugawa (2021042609144414400_DEV146589C61) 2015; 519
Tauriello (2021042609144414400_DEV146589C119) 2012; 109
Zhang (2021042609144414400_DEV146589C143) 2015; 32
Wang (2021042609144414400_DEV146589C130) 1997; 88
Molenaar (2021042609144414400_DEV146589C85) 1996; 86
Behrens (2021042609144414400_DEV146589C11) 1996; 382
Green (2021042609144414400_DEV146589C48) 2015; 244
Hart (2021042609144414400_DEV146589C51) 1999; 9
Moon (2021042609144414400_DEV146589C86) 1998; 20
Lyashenko (2021042609144414400_DEV146589C80) 2011; 13
Tao (2021042609144414400_DEV146589C118) 2005; 120
Glinka (2021042609144414400_DEV146589C40) 1998; 391
Farin (2021042609144414400_DEV146589C36) 2016; 530
Krasnow (2021042609144414400_DEV146589C67) 1995; 121
Lim (2021042609144414400_DEV146589C74) 2016; 113
Rattner (2021042609144414400_DEV146589C101) 1997; 94
Tabar (2021042609144414400_DEV146589C145) 2014; 15
Cong (2021042609144414400_DEV146589C25) 2004; 131
Cavallo (2021042609144414400_DEV146589C19) 1998; 395
Brunkow (2021042609144414400_DEV146589C16) 2001; 68
Hill (2021042609144414400_DEV146589C53) 2005; 8
Yan (2021042609144414400_DEV146589C138) 2017; 545
Nusse (2021042609144414400_DEV146589C93) 2017; 169
van Amerongen (2021042609144414400_DEV146589C123) 2012; 11
van den Heuvel (2021042609144414400_DEV146589C125) 1993; 12
Davidson (2021042609144414400_DEV146589C29) 2005; 438
Cui (2021042609144414400_DEV146589C28) 2011; 17
Gong (2021042609144414400_DEV146589C44) 2001; 107
Huelsken (2021042609144414400_DEV146589C55) 2001; 105
Van der Flier (2021042609144414400_DEV146589C126) 2007; 132
Boyden (2021042609144414400_DEV146589C15) 2002; 346
Wang (2021042609144414400_DEV146589C131) 2015; 524
Stamos (2021042609144414400_DEV146589C115) 2014; 3
Lee (2021042609144414400_DEV146589C70) 2003; 1
Nüsslein-Volhard (2021042609144414400_DEV146589C94) 1980; 287
Lien (2021042609144414400_DEV146589C72) 2014; 16
Amit (2021042609144414400_DEV146589C1) 2002; 16
Pinto (2021042609144414400_DEV146589C98) 2003; 17
Tamai (2021042609144414400_DEV146589C116) 2000; 407
Cancer Genome Atlas Network (2021042609144414400_DEV146589C17) 2012; 487
Saag (2021042609144414400_DEV146589C108) 2017; 377
Zhang (2021042609144414400_DEV146589C142) 2012; 149
Willert (2021042609144414400_DEV146589C133) 2003; 423
Xu (2021042609144414400_DEV146589C137) 2016; 113
Povelones (2021042609144414400_DEV146589C99) 2005; 24
Recker (2021042609144414400_DEV146589C102) 2015; 30
Barker (2021042609144414400_DEV146589C6) 2007; 449
Glorieux (2021042609144414400_DEV146589C42) 2017; 32
Mao (2021042609144414400_DEV146589C83) 2001; 7
Chia (2021042609144414400_DEV146589C22) 2005; 25
Lustig (2021042609144414400_DEV146589C79) 2002; 22
Bafico (2021042609144414400_DEV146589C3) 2001; 3
Munemitsu (2021042609144414400_DEV146589C88) 1995; 92
Tamai (2021042609144414400_DEV146589C117) 2004; 13
Semënov (2021042609144414400_DEV146589C112) 2001; 11
Hao (2021042609144414400_DEV146589C49) 2012; 485
Nusse (2021042609144414400_DEV146589C92) 2001; 17
MacDonald (2021042609144414400_DEV146589C82) 2012; 4
Rubinfeld (2021042609144414400_DEV146589C107) 1996; 272
Chen (2021042609144414400_DEV146589C21) 2013; 27
Genikhovich (2021042609144414400_DEV146589C39) 2017; 144
Fevr (2021042609144414400_DEV146589C37) 2007; 27
de Lau (2021042609144414400_DEV146589C33) 2011; 476
Jho (2021042609144414400_DEV146589C59) 2002; 22
McMahon (2021042609144414400_DEV146589C84) 1989; 58
Nichols (2021042609144414400_DEV146589C90) 2009; 4
Rijsewijk (2021042609144414400_DEV146589C103) 1987; 50
Little (2021042609144414400_DEV146589C75) 2002; 70
Jaks (2021042609144414400_DEV146589C56) 2008; 40
Baron (2021042609144414400_DEV146589C8) 2013; 19
Williams (2021042609144414400_DEV146589C135) 2012; 149
Veltri (2021042609144414400_DEV146589C129) 2018; 36
Wehrli (2021042609144414400_DEV146589C132) 2000; 407
Lyle (2021042609144414400_DEV146589C81) 1998; 111
Greco (2021042609144414400_DEV146589C47) 2009; 4
Williams (2021042609144414400_DEV146589C134) 2017; 102
Biechele (2021042609144414400_DEV146589C14) 2013; 140
Morin (2021042609144414400_DEV146589C87) 1997; 275
Zeng (2021042609144414400_DEV146589C141) 2005; 438
Clevers (2021042609144414400_DEV146589C24) 2014; 346
Rousset (2021042609144414400_DEV146589C105) 2001; 15
Sato (2021042609144414400_DEV146589C109) 2004; 10
Bennett (2021042609144414400_DEV146589C12) 2005; 102
Enshell-Seijffers (2021042609144414400_DEV146589C35) 2010; 18
Roose (2021042609144414400_DEV146589C104) 1998; 395
References_xml – volume: 342
  start-page: 1226
  year: 2013
  ident: 2021042609144414400_DEV146589C73
  article-title: Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling
  publication-title: Science
  doi: 10.1126/science.1239730
– volume: 407
  start-page: 535
  year: 2000
  ident: 2021042609144414400_DEV146589C97
  article-title: An LDL-receptor-related protein mediates Wnt signalling in mice
  publication-title: Nature
  doi: 10.1038/35035124
– volume: 407
  start-page: 527
  year: 2000
  ident: 2021042609144414400_DEV146589C132
  article-title: arrow encodes an LDL-receptor-related protein essential for Wingless signalling
  publication-title: Nature
  doi: 10.1038/35035110
– volume: 17
  start-page: 788
  year: 2009
  ident: 2021042609144414400_DEV146589C30
  article-title: Cell cycle control of wnt receptor activation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.11.006
– volume: 22
  start-page: 1184
  year: 2002
  ident: 2021042609144414400_DEV146589C79
  article-title: Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.4.1184-1193.2002
– volume: 105
  start-page: 533
  year: 2001
  ident: 2021042609144414400_DEV146589C55
  article-title: beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00336-1
– volume: 109
  start-page: E812
  year: 2012
  ident: 2021042609144414400_DEV146589C119
  article-title: Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1114802109
– volume: 13
  start-page: 149
  year: 2004
  ident: 2021042609144414400_DEV146589C117
  article-title: A mechanism for Wnt coreceptor activation
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00484-2
– volume: 11
  start-page: 951
  year: 2001
  ident: 2021042609144414400_DEV146589C112
  article-title: Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00290-1
– volume: 14
  start-page: 1181
  year: 2000
  ident: 2021042609144414400_DEV146589C62
  article-title: Wnt signaling maintains the hair-inducing activity of the dermal papilla
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.10.1181
– volume: 280
  start-page: 596
  year: 1998
  ident: 2021042609144414400_DEV146589C10
  article-title: Functional interaction of an axin homolog, conductin, with -catenin, APC, and GSK3
  publication-title: Science
  doi: 10.1126/science.280.5363.596
– volume: 7
  start-page: e33126
  year: 2018
  ident: 2021042609144414400_DEV146589C69
  article-title: R-spondins can potentiate WNT signaling without LGRs
  publication-title: Elife
  doi: 10.7554/eLife.33126
– volume: 149
  start-page: 1565
  year: 2012
  ident: 2021042609144414400_DEV146589C142
  article-title: Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.039
– volume: 112
  start-page: E478
  year: 2015
  ident: 2021042609144414400_DEV146589C121
  article-title: Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1409857112
– volume: 17
  start-page: 684
  year: 2011
  ident: 2021042609144414400_DEV146589C28
  article-title: Lrp5 functions in bone to regulate bone mass
  publication-title: Nat. Med.
  doi: 10.1038/nm.2388
– volume: 24
  start-page: 3493
  year: 2005
  ident: 2021042609144414400_DEV146589C99
  article-title: The role of the cysteine-rich domain of Frizzled in Wingless-Armadillo signaling
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600817
– volume: 61
  start-page: 1329
  year: 1990
  ident: 2021042609144414400_DEV146589C26
  article-title: Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90696-C
– volume: 438
  start-page: 867
  year: 2005
  ident: 2021042609144414400_DEV146589C29
  article-title: Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction
  publication-title: Nature
  doi: 10.1038/nature04170
– volume: 24
  start-page: 1098
  year: 2005
  ident: 2021042609144414400_DEV146589C45
  article-title: The Wnt antagonist DICKKOPF-1 gene is a downstream target of β-catenin/TCF and is downregulated in human colon cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208303
– volume: 111
  start-page: 3179
  year: 1998
  ident: 2021042609144414400_DEV146589C81
  article-title: The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.111.21.3179
– volume: 108
  start-page: 837
  year: 2002
  ident: 2021042609144414400_DEV146589C76
  article-title: Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00685-2
– volume: 144
  start-page: 3392
  year: 2017
  ident: 2021042609144414400_DEV146589C39
  article-title: On the evolution of bilaterality
  publication-title: Development
  doi: 10.1242/dev.141507
– volume: 94
  start-page: 2859
  year: 1997
  ident: 2021042609144414400_DEV146589C101
  article-title: A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.7.2859
– volume: 10
  start-page: 55
  year: 2004
  ident: 2021042609144414400_DEV146589C109
  article-title: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor
  publication-title: Nat. Med.
  doi: 10.1038/nm979
– volume: 109
  start-page: 4485
  year: 2012
  ident: 2021042609144414400_DEV146589C31
  article-title: Wnt/ -catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1118777109
– volume: 3
  start-page: e4046
  year: 2008
  ident: 2021042609144414400_DEV146589C96
  article-title: Direct inhibition of GSK3β by the phosphorylated cytoplasmic domain of LRP6 in Wnt/β-catenin signaling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004046
– volume: 154
  start-page: 274
  year: 2013
  ident: 2021042609144414400_DEV146589C23
  article-title: The intestinal crypt, a prototype stem cell compartment
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.004
– volume: 488
  start-page: 665
  year: 2012
  ident: 2021042609144414400_DEV146589C64
  article-title: Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors
  publication-title: Nature
  doi: 10.1038/nature11308
– volume: 20
  start-page: 781
  year: 2004
  ident: 2021042609144414400_DEV146589C77
  article-title: The Wnt signaling pathway in development and disease
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.20.010403.113126
– volume: 449
  start-page: 1003
  year: 2007
  ident: 2021042609144414400_DEV146589C6
  article-title: Identification of stem cells in small intestine and colon by marker gene Lgr5
  publication-title: Nature
  doi: 10.1038/nature06196
– volume: 107
  start-page: 513
  year: 2001
  ident: 2021042609144414400_DEV146589C44
  article-title: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00571-2
– volume: 36
  start-page: 22
  year: 2018
  ident: 2021042609144414400_DEV146589C129
  article-title: Concise review: Wnt signaling pathways in skin development and epidermal stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.2723
– volume: 361
  start-page: 392
  year: 2012
  ident: 2021042609144414400_DEV146589C52
  article-title: Porcupine-mediated lipidation is required for Wnt recognition by Wls
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.11.003
– volume: 30
  start-page: 216
  year: 2015
  ident: 2021042609144414400_DEV146589C102
  article-title: A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2351
– volume: 125
  start-page: 509
  year: 2006
  ident: 2021042609144414400_DEV146589C5
  article-title: Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.049
– volume: 105
  start-page: 8032
  year: 2008
  ident: 2021042609144414400_DEV146589C27
  article-title: LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of -catenin
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0803025105
– volume: 519
  start-page: 187
  year: 2015
  ident: 2021042609144414400_DEV146589C61
  article-title: Notum deacylates Wnt proteins to suppress signalling activity
  publication-title: Nature
  doi: 10.1038/nature14259
– volume: 125
  start-page: 523
  year: 2006
  ident: 2021042609144414400_DEV146589C9
  article-title: Secretion of Wnt ligands requires Evi, a conserved transmembrane protein
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.009
– volume: 13
  start-page: 753
  year: 2011
  ident: 2021042609144414400_DEV146589C80
  article-title: Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2260
– volume: 287
  start-page: 795
  year: 1980
  ident: 2021042609144414400_DEV146589C94
  article-title: Mutations affecting segment number and polarity in Drosophila
  publication-title: Nature
  doi: 10.1038/287795a0
– volume: 275
  start-page: 1787
  year: 1997
  ident: 2021042609144414400_DEV146589C87
  article-title: Activation of beta -Catenin-Tcf signaling in colon cancer by mutations in beta -catenin or APC
  publication-title: Science
  doi: 10.1126/science.275.5307.1787
– volume: 104
  start-page: 233
  year: 2001
  ident: 2021042609144414400_DEV146589C95
  article-title: Morphogenesis and renewal of hair follicles from adult multipotent stem cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00208-2
– volume: 4
  start-page: 2787
  year: 2013
  ident: 2021042609144414400_DEV146589C140
  article-title: Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3787
– volume: 18
  start-page: 633
  year: 2010
  ident: 2021042609144414400_DEV146589C35
  article-title: beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.01.016
– volume: 545
  start-page: 238
  year: 2017
  ident: 2021042609144414400_DEV146589C138
  article-title: Non-equivalence of Wnt and R-spondin ligands during Lgr5(+) intestinal stem-cell self-renewal
  publication-title: Nature
  doi: 10.1038/nature22313
– volume: 16
  start-page: 1066
  year: 2002
  ident: 2021042609144414400_DEV146589C1
  article-title: Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway
  publication-title: Genes Dev.
  doi: 10.1101/gad.230302
– volume: 70
  start-page: 11
  year: 2002
  ident: 2021042609144414400_DEV146589C75
  article-title: A mutation in the LDL receptor–related protein 5 gene results in the autosomal dominant high–bone-mass trait
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/338450
– volume: 8
  start-page: 573
  year: 1998
  ident: 2021042609144414400_DEV146589C50
  article-title: Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(98)70226-X
– volume: 15
  start-page: 928
  year: 2005
  ident: 2021042609144414400_DEV146589C78
  article-title: Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease
  publication-title: Genome Res.
  doi: 10.1101/gr.3437105
– volume: 169
  start-page: 985
  year: 2017
  ident: 2021042609144414400_DEV146589C93
  article-title: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.016
– volume: 6
  start-page: 1302
  year: 1996
  ident: 2021042609144414400_DEV146589C139
  article-title: A frizzled homolog functions in a vertebrate Wnt signaling pathway
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)70716-1
– volume: 524
  start-page: 180
  year: 2015
  ident: 2021042609144414400_DEV146589C131
  article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver
  publication-title: Nature
  doi: 10.1038/nature14863
– volume: 3
  start-page: 683
  year: 2001
  ident: 2021042609144414400_DEV146589C3
  article-title: Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35083081
– volume: 438
  start-page: 873
  year: 2005
  ident: 2021042609144414400_DEV146589C141
  article-title: A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation
  publication-title: Nature
  doi: 10.1038/nature04185
– volume: 382
  start-page: 638
  year: 1996
  ident: 2021042609144414400_DEV146589C11
  article-title: Functional interaction of β-catenin with the transcription factor LEF-1
  publication-title: Nature
  doi: 10.1038/382638a0
– volume: 10
  start-page: 468
  year: 2009
  ident: 2021042609144414400_DEV146589C144
  article-title: Proximal events in Wnt signal transduction
  publication-title: Nat. Rev. Mol. Cell Biol
  doi: 10.1038/nrm2717
– volume: 143
  start-page: 1914
  year: 2016
  ident: 2021042609144414400_DEV146589C89
  article-title: Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules
  publication-title: Development
  doi: 10.1242/dev.131664
– volume: 382
  start-page: 225
  year: 1996
  ident: 2021042609144414400_DEV146589C13
  article-title: A new member of the frizzled family from Drosophila functions as a Wingless receptor
  publication-title: Nature
  doi: 10.1038/382225a0
– volume: 32
  start-page: 1496
  year: 2017
  ident: 2021042609144414400_DEV146589C42
  article-title: BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized Phase 2a trial
  publication-title: J. Bone Miner Res.
  doi: 10.1002/jbmr.3143
– volume: 101
  start-page: 8017
  year: 2004
  ident: 2021042609144414400_DEV146589C111
  article-title: Anteriorization of neural fate by inhibitor of beta-catenin and T cell factor (ICAT), a negative regulator of Wnt signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0401733101
– volume: 88
  start-page: 757
  year: 1997
  ident: 2021042609144414400_DEV146589C130
  article-title: Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81922-4
– volume: 19
  start-page: 179
  year: 2013
  ident: 2021042609144414400_DEV146589C8
  article-title: WNT signaling in bone homeostasis and disease: from human mutations to treatments
  publication-title: Nat. Med.
  doi: 10.1038/nm.3074
– volume: 88
  start-page: 747
  year: 1997
  ident: 2021042609144414400_DEV146589C71
  article-title: Frzb-1 is a secreted antagonist of Wnt signaling expressed in the spemann organizer
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81921-2
– volume: 487
  start-page: 330
  year: 2012
  ident: 2021042609144414400_DEV146589C17
  article-title: Comprehensive molecular characterization of human colon and rectal cancer
  publication-title: Nature
  doi: 10.1038/nature11252
– volume: 391
  start-page: 357
  year: 1998
  ident: 2021042609144414400_DEV146589C40
  article-title: Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction
  publication-title: Nature
  doi: 10.1038/34848
– volume: 58
  start-page: 1075
  year: 1989
  ident: 2021042609144414400_DEV146589C84
  article-title: Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90506-0
– volume: 8
  start-page: 118
  year: 1994
  ident: 2021042609144414400_DEV146589C63
  article-title: The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.1.118
– volume: 395
  start-page: 604
  year: 1998
  ident: 2021042609144414400_DEV146589C19
  article-title: Drosophila Tcf and Groucho interact to repress Wingless signalling activity
  publication-title: Nature
  doi: 10.1038/26982
– volume: 4
  start-page: a007880
  year: 2012
  ident: 2021042609144414400_DEV146589C82
  article-title: Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a007880
– volume: 108
  start-page: 11452
  year: 2011
  ident: 2021042609144414400_DEV146589C18
  article-title: R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1106083108
– volume: 104
  start-page: 15418
  year: 2007
  ident: 2021042609144414400_DEV146589C66
  article-title: Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0707210104
– volume: 113
  start-page: E1498
  year: 2016
  ident: 2021042609144414400_DEV146589C74
  article-title: Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1601599113
– volume: 17
  start-page: 443
  year: 2001
  ident: 2021042609144414400_DEV146589C92
  article-title: An ancient cluster of Wnt paralogues
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(01)02349-6
– volume: 337
  start-page: 59
  year: 2012
  ident: 2021042609144414400_DEV146589C57
  article-title: Structural basis of Wnt recognition by Frizzled
  publication-title: Science
  doi: 10.1126/science.1222879
– volume: 17
  start-page: 1709
  year: 2003
  ident: 2021042609144414400_DEV146589C98
  article-title: Canonical Wnt signals are essential for homeostasis of the intestinal epithelium
  publication-title: Genes Dev.
  doi: 10.1101/gad.267103
– volume: 11
  start-page: 387
  year: 2012
  ident: 2021042609144414400_DEV146589C123
  article-title: Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.05.023
– volume: 9
  start-page: 207
  year: 1999
  ident: 2021042609144414400_DEV146589C51
  article-title: The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(99)80091-8
– volume: 12
  start-page: 5293
  year: 1993
  ident: 2021042609144414400_DEV146589C125
  article-title: Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1993.tb06225.x
– volume: 39
  start-page: 91
  year: 2002
  ident: 2021042609144414400_DEV146589C4
  article-title: Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.39.2.91
– volume: 7
  start-page: 801
  year: 2001
  ident: 2021042609144414400_DEV146589C83
  article-title: Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00224-6
– volume: 423
  start-page: 448
  year: 2003
  ident: 2021042609144414400_DEV146589C133
  article-title: Wnt proteins are lipid-modified and can act as stem cell growth factors
  publication-title: Nature
  doi: 10.1038/nature01611
– volume: 86
  start-page: 391
  year: 1996
  ident: 2021042609144414400_DEV146589C85
  article-title: XTcf-3 transcription factor mediates β-catenin-induced axis formation in xenopus embryos
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80112-9
– volume: 12
  start-page: 1055
  year: 2011
  ident: 2021042609144414400_DEV146589C41
  article-title: LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.175
– volume: 121
  start-page: 4095
  year: 1995
  ident: 2021042609144414400_DEV146589C67
  article-title: Dishevelled is a component of the frizzled signaling pathway in Drosophila
  publication-title: Development
  doi: 10.1242/dev.121.12.4095
– volume: 407
  start-page: 530
  year: 2000
  ident: 2021042609144414400_DEV146589C116
  article-title: LDL-receptor-related proteins in Wnt signal transduction
  publication-title: Nature
  doi: 10.1038/35035117
– volume: 395
  start-page: 608
  year: 1998
  ident: 2021042609144414400_DEV146589C104
  article-title: The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors
  publication-title: Nature
  doi: 10.1038/26989
– volume: 5
  start-page: a007898
  year: 2012
  ident: 2021042609144414400_DEV146589C114
  article-title: The -catenin destruction complex
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a007898
– volume: 16
  start-page: 179
  year: 2014
  ident: 2021042609144414400_DEV146589C72
  article-title: In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2903
– volume: 530
  start-page: 340
  year: 2016
  ident: 2021042609144414400_DEV146589C36
  article-title: Visualization of a short-range Wnt gradient in the intestinal stem-cell niche
  publication-title: Nature
  doi: 10.1038/nature16937
– volume: 92
  start-page: 3046
  year: 1995
  ident: 2021042609144414400_DEV146589C88
  article-title: Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.92.7.3046
– volume: 15
  start-page: 82
  year: 2014
  ident: 2021042609144414400_DEV146589C145
  article-title: Pluripotent stem cells in regenerative medicine: challenges and recent progress
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3563
– volume: 346
  start-page: 1513
  year: 2002
  ident: 2021042609144414400_DEV146589C15
  article-title: High bone density due to a mutation in LDL-receptor–related protein 5
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa013444
– volume: 32
  start-page: 719
  year: 2015
  ident: 2021042609144414400_DEV146589C143
  article-title: Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.02.014
– volume: 303
  start-page: 359
  year: 2004
  ident: 2021042609144414400_DEV146589C122
  article-title: Defining the epithelial stem cell niche in skin
  publication-title: Science
  doi: 10.1126/science.1092436
– volume: 15
  start-page: 658
  year: 2001
  ident: 2021042609144414400_DEV146589C105
  article-title: Naked cuticle targets dishevelled to antagonize Wnt signal transduction
  publication-title: Genes Dev.
  doi: 10.1101/gad.869201
– volume: 40
  start-page: 1291
  year: 2008
  ident: 2021042609144414400_DEV146589C56
  article-title: Lgr5 marks cycling, yet long-lived, hair follicle stem cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng.239
– volume: 3
  start-page: e01998
  year: 2014
  ident: 2021042609144414400_DEV146589C115
  article-title: Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6
  publication-title: Elife
  doi: 10.7554/eLife.01998
– volume: 2
  start-page: 643
  year: 2002
  ident: 2021042609144414400_DEV146589C2
  article-title: WNT signals are required for the initiation of hair follicle development
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(02)00167-3
– volume: 137
  start-page: 845
  year: 2010
  ident: 2021042609144414400_DEV146589C91
  article-title: On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes
  publication-title: Development
  doi: 10.1242/dev.039651
– volume: 21
  start-page: 848
  year: 2011
  ident: 2021042609144414400_DEV146589C20
  article-title: Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.09.007
– volume: 88
  start-page: 789
  year: 1997
  ident: 2021042609144414400_DEV146589C124
  article-title: Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81925-X
– volume: 8
  start-page: 727
  year: 2005
  ident: 2021042609144414400_DEV146589C53
  article-title: Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2005.02.013
– volume: 13
  start-page: 1070
  year: 2011
  ident: 2021042609144414400_DEV146589C120
  article-title: Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2314
– volume: 4
  start-page: 487
  year: 2009
  ident: 2021042609144414400_DEV146589C90
  article-title: Naive and primed pluripotent states
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.015
– volume: 244
  start-page: 507
  year: 2015
  ident: 2021042609144414400_DEV146589C48
  article-title: Vertebrate nervous system posteriorization: Grading the function of Wnt signaling
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24230
– volume: 272
  start-page: 1023
  year: 1996
  ident: 2021042609144414400_DEV146589C107
  article-title: Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly
  publication-title: Science
  doi: 10.1126/science.272.5264.1023
– volume: 19
  start-page: 379
  year: 1998
  ident: 2021042609144414400_DEV146589C65
  article-title: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4
  publication-title: Nat. Genet.
  doi: 10.1038/1270
– volume: 68
  start-page: 577
  year: 2001
  ident: 2021042609144414400_DEV146589C16
  article-title: Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/318811
– volume: 1
  start-page: e10
  year: 2003
  ident: 2021042609144414400_DEV146589C70
  article-title: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0000010
– volume: 50
  start-page: 649
  year: 1987
  ident: 2021042609144414400_DEV146589C103
  article-title: The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90038-9
– volume: 27
  start-page: 7551
  year: 2007
  ident: 2021042609144414400_DEV146589C37
  article-title: Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01034-07
– volume: 459
  start-page: 262
  year: 2009
  ident: 2021042609144414400_DEV146589C110
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 149
  start-page: 1174
  year: 2012
  ident: 2021042609144414400_DEV146589C135
  article-title: SnapShot: directed differentiation of pluripotent stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.015
– volume: 4
  start-page: 155
  year: 2009
  ident: 2021042609144414400_DEV146589C47
  article-title: A two-step mechanism for stem cell activation during hair regeneration
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.12.009
– volume: 22
  start-page: 1172
  year: 2002
  ident: 2021042609144414400_DEV146589C59
  article-title: Wnt/ -catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.4.1172-1183.2002
– volume: 8
  start-page: 739
  year: 2005
  ident: 2021042609144414400_DEV146589C32
  article-title: Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2005.03.016
– volume: 398
  start-page: 431
  year: 1999
  ident: 2021042609144414400_DEV146589C54
  article-title: A new secreted protein that binds to Wnt proteins and inhibits their activities
  publication-title: Nature
  doi: 10.1038/18899
– volume: 377
  start-page: 1417
  year: 2017
  ident: 2021042609144414400_DEV146589C108
  article-title: Romosozumab or alendronate for fracture prevention in women with osteoporosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1708322
– volume: 262
  start-page: 1731
  year: 1993
  ident: 2021042609144414400_DEV146589C106
  article-title: Association of the APC gene product with beta-catenin
  publication-title: Science
  doi: 10.1126/science.8259518
– volume: 48
  start-page: 461
  year: 1976
  ident: 2021042609144414400_DEV146589C113
  article-title: Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(76)90108-1
– volume: 102
  start-page: 3324
  year: 2005
  ident: 2021042609144414400_DEV146589C12
  article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0408742102
– volume: 36
  start-page: 872
  year: 2009
  ident: 2021042609144414400_DEV146589C43
  article-title: Evidence that fold-change, and not absolute level, of β-catenin dictates Wnt signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.11.017
– volume: 485
  start-page: 195
  year: 2012
  ident: 2021042609144414400_DEV146589C49
  article-title: ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner
  publication-title: Nature
  doi: 10.1038/nature11019
– volume: 141
  start-page: 2206
  year: 2014
  ident: 2021042609144414400_DEV146589C60
  article-title: Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts
  publication-title: Development
  doi: 10.1242/dev.104976
– volume: 140
  start-page: 2961
  year: 2013
  ident: 2021042609144414400_DEV146589C14
  article-title: Porcn-dependent Wnt signaling is not required prior to mouse gastrulation
  publication-title: Development
  doi: 10.1242/dev.094458
– volume: 102
  start-page: 26
  year: 2017
  ident: 2021042609144414400_DEV146589C134
  article-title: LRP5: From bedside to bench to bone
  publication-title: Bone
  doi: 10.1016/j.bone.2017.03.044
– volume: 133
  start-page: 4901
  year: 2006
  ident: 2021042609144414400_DEV146589C46
  article-title: Sprinter: a novel transmembrane protein required for Wg secretion and signaling
  publication-title: Development
  doi: 10.1242/dev.02674
– volume: 13
  start-page: 270
  year: 1999
  ident: 2021042609144414400_DEV146589C136
  article-title: The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.3.270
– volume: 27
  start-page: 1345
  year: 2013
  ident: 2021042609144414400_DEV146589C21
  article-title: The structural basis of R-spondin recognition by LGR5 and RNF43
  publication-title: Genes Dev.
  doi: 10.1101/gad.219915.113
– volume: 132
  start-page: 628
  year: 2007
  ident: 2021042609144414400_DEV146589C126
  article-title: The intestinal Wnt/TCF signature
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.08.039
– volume: 476
  start-page: 293
  year: 2011
  ident: 2021042609144414400_DEV146589C33
  article-title: Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling
  publication-title: Nature
  doi: 10.1038/nature10337
– volume: 17
  start-page: 1219
  year: 2003
  ident: 2021042609144414400_DEV146589C127
  article-title: Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice
  publication-title: Genes Dev.
  doi: 10.1101/gad.1076103
– volume: 20
  start-page: 536
  year: 1998
  ident: 2021042609144414400_DEV146589C86
  article-title: From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus
  publication-title: BioEssays
  doi: 10.1002/(SICI)1521-1878(199807)20:7<536::AID-BIES4>3.0.CO;2-I
– volume: 6
  start-page: 25
  year: 2010
  ident: 2021042609144414400_DEV146589C7
  article-title: Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.11.013
– volume: 131
  start-page: 5103
  year: 2004
  ident: 2021042609144414400_DEV146589C25
  article-title: Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP
  publication-title: Development
  doi: 10.1242/dev.01318
– volume: 4
  start-page: 114
  year: 2015
  ident: 2021042609144414400_DEV146589C68
  article-title: Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2014.11.007
– volume: 545
  start-page: 234
  year: 2017
  ident: 2021042609144414400_DEV146589C58
  article-title: Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling
  publication-title: Nature
  doi: 10.1038/nature22306
– volume: 120
  start-page: 857
  year: 2005
  ident: 2021042609144414400_DEV146589C118
  article-title: Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos
  publication-title: Cell
  doi: 10.1016/j.cell.2005.01.013
– volume: 25
  start-page: 4371
  year: 2005
  ident: 2021042609144414400_DEV146589C22
  article-title: Mouse axin and axin2/conductin proteins are functionally equivalent in vivo
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.11.4371-4376.2005
– volume: 113
  start-page: E6382
  year: 2016
  ident: 2021042609144414400_DEV146589C137
  article-title: Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1613849113
– volume: 67
  start-page: 181
  year: 2017
  ident: 2021042609144414400_DEV146589C38
  article-title: Wnt-dependent inactivation of the groucho/TLE co-repressor by the HECT E3 ubiquitin ligase Hyd/UBR5
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.009
– volume: 287
  start-page: 34167
  year: 2012
  ident: 2021042609144414400_DEV146589C100
  article-title: Precise regulation of porcupine activity is required for physiological Wnt signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.381970
– volume: 6
  start-page: e18650
  year: 2011
  ident: 2021042609144414400_DEV146589C128
  article-title: Naked1 antagonizes Wnt signaling by preventing nuclear accumulation of β-catenin
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018650
– volume: 346
  start-page: 1248012
  year: 2014
  ident: 2021042609144414400_DEV146589C24
  article-title: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control
  publication-title: Science
  doi: 10.1126/science.1248012
SSID ssj0003677
Score 2.6856883
SecondaryResourceType review_article
Snippet The Wnt-β-catenin signaling pathway is an evolutionarily conserved cell-cell communication system that is important for stem cell renewal, cell proliferation...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage dev146589
SubjectTerms Cancer
Cell interactions
Cell proliferation
Cell signaling
Embryogenesis
Homeostasis
Regenerative medicine
Signal transduction
Stem cells
Wnt protein
β-Catenin
Title Wnt signaling in development and tissue homeostasis
URI https://www.ncbi.nlm.nih.gov/pubmed/29884654
https://www.proquest.com/docview/2054084054
https://www.proquest.com/docview/2052804054
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4CMSlKo-WLQ8F0UuFAomdeLNHVEDQCi6AQFwiO5kIJJogNhzaX89M7DihbCXKJYoce534846_sefB2FeK2QZCDP0ghtwnAu-rQgW-EsGoCBOIICdv5NMzeXwZ_biOr7tsb413Sa13sz8T_UregyqWIa7kJfsfyLofxQK8R3zxigjj9U0YX5X1DhlgqHvrmZJ3JkDGNLIZ1p3b6hdUSAPHd-M-Ge0ZDDWHua37Vm934JySYd4q49dzo8hHy-3B79OG4NiZiil7QG-3EMKkM3Vye4EBWZyYIjCSMKKz3dB22IpKE_qxnRPhRBmMiz4OHH4wSeHYJAh6Gej6rwXImQWSQoKtU2ybmrbTbJYj_6fUFAcnP90SK2STUtO9t407i233un5fMo1_qA8Njbj4yD5Y_u_tGzAX2RSUS2zOZAT9vcTmT62tAxbeVE3hMhOIs-dw9u5Kr4ezhzh7Bmevh_MKuzw6vPh-7NtkF36GpKn2IUwKyMIkiZQKcgiFhoKD4rHQOi54LnFpAZmHSkmZCRFribolaJS_xLkKJT6xmbIqYZV5QzXMuNIQyRw5Cg9GySgWRQai0BF2lg_Yt3Zg0sxGgqeEJPfpawAGbNvVfTDxTybWWm_HN7X_j3HKSRtIUCGIBmzLPUbpRUdSOCerp6YOTwJT57PBxXXDRzgYMo6-vOkV1thCN7XX2Uz9-AQbyBdrvdnMnWePrWmh
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wnt+signaling+in+development+and+tissue+homeostasis&rft.jtitle=Development+%28Cambridge%29&rft.au=Steinhart%2C+Zachary&rft.au=Angers%2C+Stephane&rft.date=2018-06-01&rft.issn=0950-1991&rft.eissn=1477-9129&rft.volume=145&rft.issue=11&rft_id=info:doi/10.1242%2Fdev.146589&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_146589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon