An ultralow-loss and broadband micromachined RF inductor for RFIC input-matching applications

In this brief, we demonstrate that ultralow-loss and broadband inductors can be obtained by using the CMOS process compatible backside inductively coupled-plasma (ICP) deep-trench technology to selectively remove the silicon underneath the inductors. The results show that a 378.5% increase in maximu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 53; no. 3; pp. 568 - 570
Main Authors TAO WANG, LIN, Yo-Sheng, LU, Shey-Shi
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this brief, we demonstrate that ultralow-loss and broadband inductors can be obtained by using the CMOS process compatible backside inductively coupled-plasma (ICP) deep-trench technology to selectively remove the silicon underneath the inductors. The results show that a 378.5% increase in maximum Q-factor (Q/sub max/) (from 10.7 at 4.7 GHz to 51.2 at 14.9 GHz), a 22.1% increase in self-resonant frequency (f/sub SR/) (from 16.5 to 20.15 GHz), a 16.3% increase (from 0.86 to 0.9999) in maximum available power gain (G/sub Amax/) at 5 GHz, and a 0.654-dB reduction (from 0.654 dB to 4.08/spl times/10/sup -4/ dB) in minimum noise figure (NF/sub min/) at 5 GHz were achieved for a 2-nH inductor after the backside ICP dry etching. In addition, state-of-the-art ultralow-loss G/sub Amax//spl les/0.99 (i.e., NF/sub min//spl les/0.045 dB) for frequencies lower than 12.5 GHz was achieved for this 2-nH inductor after the backside inductively coupled-plasma dry etching. This means this on-chip inductor-on-air can be used to realize an ultralow-noise 3.1-10.6 GHz ultrawide-band RFIC. These results show that the CMOS process compatible backside ICP etching technique is very promising for system-on-a-chip applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2005.863768