Finite-Element Modeling of Electrostatic Sensors for the Flow Measurement of Particles in Pneumatic Pipelines

Electrostatic sensors are used in certain industries for the flow measurement of pneumatically conveyed solids. However, despite various advances that have been made in recent years, relatively little information is known about the exact nature of the electrostatic charge induced onto the sensor ele...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 58; no. 8; pp. 2730 - 2736
Main Authors Krabicka, J., Yong Yan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electrostatic sensors are used in certain industries for the flow measurement of pneumatically conveyed solids. However, despite various advances that have been made in recent years, relatively little information is known about the exact nature of the electrostatic charge induced onto the sensor electrode due to moving particles, which is dependent on electrode geometry, particle distribution, and particle velocity. This paper presents a novel approach to the study of the charge induced onto electrostatic sensors based on fitting a Lorentzian curve to the results of a finite-element model of the electrostatic sensor and pipeline. The modeling method is validated by comparing the modeling results of a nonintrusive circular electrode with an established analytical solution. The modeling results are used for in-depth analysis and informed design of a particular sensor configuration.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2009.2016288