A deep submicrometer CMOS process compatible high-Q air-gap solenoid inductor with laterally laid structure

A high-quality (Q) on-chip solenoid inductor has been fabricated by 0.18 mm CMOS technology with air-gap structure. The solenoid structure with laterally laid out structure saves the chip area significantly and the air-gap suppresses the parasitic capacitances to obtain high-Q value. Additionally, w...

Full description

Saved in:
Bibliographic Details
Published inIEEE electron device letters Vol. 26; no. 3; pp. 160 - 162
Main Authors Lin, C.S., Fang, Y.K., Chen, S.F., Lin, C.Y., Hsieh, M.C., Lai, C.M., Chou, T.H., Chen, C.H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A high-quality (Q) on-chip solenoid inductor has been fabricated by 0.18 mm CMOS technology with air-gap structure. The solenoid structure with laterally laid out structure saves the chip area significantly and the air-gap suppresses the parasitic capacitances to obtain high-Q value. Additionally, with software ANSYS simulation, the solenoid inductor also possesses a higher strength for impact (80 000 times) in comparison to a spiral inductor. The measured peak-Q and peak-Q frequency with an air-gap are 8.8 and 1.7 GHz, respectively, which present almost 9% improvements in the magnitude and 54% in the peak-Q frequency in comparison to the conventional solenoid inductor at 8.1 and 1.1 GHz.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2005.843213