A deep learning-based mathematical modeling strategy for classifying musical genres in musical industry

Since the beginning of the digital music era, the number of available digital music resources has skyrocketed. The genre of music is a significant classification to use when elaborating music; the role of music tags in locating and categorizing electronic music services is essential. To categorize s...

Full description

Saved in:
Bibliographic Details
Published inNonlinear engineering Vol. 12; no. 1; pp. 23 - 30
Main Authors He, Xiaoquan, Dong, Fang
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN2192-8029
2192-8010
2192-8029
DOI10.1515/nleng-2022-0302

Cover

Loading…
More Information
Summary:Since the beginning of the digital music era, the number of available digital music resources has skyrocketed. The genre of music is a significant classification to use when elaborating music; the role of music tags in locating and categorizing electronic music services is essential. To categorize such a large music archive manually would be prohibitively expensive and time-consuming, rendering it obsolete. This study’s main contributions to knowledge are the following: This article will break down the music into many MIDI (music played on a digital musical instrument) movements, playing way close by analysis movement, character extraction from passages, and character sequencing from movement so that you may get a clearer picture of what you are hearing. The procedure includes the following steps: extracting the note character matrix, extracting the subject and segmentation grouping based on the note character matrix, researching and extracting beneficial characteristics based on the theme of the segments, and composing the feature sequence. It is challenging for the sorter to acquire spatial and contextual knowledge about music using traditional classification techniques due to its shallow structure. This study uses the unique pattern of input MIDI segments, which are used to probe the relationship between recurrent neural networks and attention. The approach for music classification is verified when paired with the testing precision of the same-length segment categorization; thus, gathering MIDI tracks 1920 along with genre tags from the network to construct statistics sets and perform music classification analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2192-8029
2192-8010
2192-8029
DOI:10.1515/nleng-2022-0302