A novel synthesis route of Ag2S nanotubes by sulfidizing silver nanowires in ambient atmosphere

In this study, a 'two-step' strategy of synthesizing nanoparticles-assembled Ag,S nanotubes with a diameter of less than 100 nm is developed. At first, the silver nanowires with uniform length and diameter were synthesized by polyol reduction method using PVP as a capping agent. Then, the...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanoscience and nanotechnology Vol. 10; no. 9; p. 5851
Main Authors Fu, Xiaofeng, Zou, Huamin, Zhou, Li
Format Journal Article
LanguageEnglish
Published United States 01.09.2010
Online AccessGet more information

Cover

Loading…
More Information
Summary:In this study, a 'two-step' strategy of synthesizing nanoparticles-assembled Ag,S nanotubes with a diameter of less than 100 nm is developed. At first, the silver nanowires with uniform length and diameter were synthesized by polyol reduction method using PVP as a capping agent. Then, the resulting silver nanowires were exposed to the ambient atmosphere of laboratory, gradually sulfidized by sulfur-containing molecules in air, and eventually transformed into nanoparticles-assembled Ag2S nanotubes. The morphologic changes during the sulfidation process from Ag nanowires to Ag2S nanotubes were investigated by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is revealed that Ag2S nanoparticles are initially formed on the surface of Ag nanowire by sulfidation, and subsequently linked together into Ag,S nanotube. Quantitative analyses of energy dispersive X-ray spectra (EDS) and high-resolution transmission electron microscopy (HRTEM) show that the as-synthesized products are monoclinic alpha-Ag2S nanotubes. In addition, there is strong evidence that the polyvinylpyrrolidone (PVP) plays an important role as a soft template in the formation of Ag2S nanotubes. A new absorption peak at 573 nm appears in the optical absorption spectra when the Ag2S nanotubes are formed.
ISSN:1533-4880
DOI:10.1166/jnn.2010.2497