Single drop microextraction in a 96-well plate format: A step toward automated and high-throughput analysis

In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butyl...

Full description

Saved in:
Bibliographic Details
Published inAnalytica chimica acta Vol. 1063; pp. 159 - 166
Main Authors Mafra, Gabriela, Vieira, Augusto A., Merib, Josias, Anderson, Jared L., Carasek, Eduardo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 31.07.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0003-2670
1873-4324
1873-4324
DOI10.1016/j.aca.2019.02.013

Cover

Abstract In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L−1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4–20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%. [Display omitted] •A novel magnetic ionic liquid-based methodology named Parallel Single Drop Microextraction (Pa-SDME) is proposed.•The semi-automated methodology exhibited high-throughput and environmentally-friendly aspects.•This configuration allows for the extraction of up to 96 samples simultaneously.•Very satisfactory stability and analytical performance were obtained.
AbstractList In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L−1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4–20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%.
In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42-] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L-1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4-20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%.In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42-] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L-1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4-20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%.
In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L−1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4–20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%. [Display omitted] •A novel magnetic ionic liquid-based methodology named Parallel Single Drop Microextraction (Pa-SDME) is proposed.•The semi-automated methodology exhibited high-throughput and environmentally-friendly aspects.•This configuration allows for the extraction of up to 96 samples simultaneously.•Very satisfactory stability and analytical performance were obtained.
In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P ] [MnCl ] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4-20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%.
Author Mafra, Gabriela
Merib, Josias
Vieira, Augusto A.
Anderson, Jared L.
Carasek, Eduardo
Author_xml – sequence: 1
  givenname: Gabriela
  surname: Mafra
  fullname: Mafra, Gabriela
  organization: Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
– sequence: 2
  givenname: Augusto A.
  surname: Vieira
  fullname: Vieira, Augusto A.
  organization: Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
– sequence: 3
  givenname: Josias
  surname: Merib
  fullname: Merib, Josias
  email: josias@ufcspa.edu.br
  organization: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil
– sequence: 4
  givenname: Jared L.
  orcidid: 0000-0001-6915-8752
  surname: Anderson
  fullname: Anderson, Jared L.
  organization: Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
– sequence: 5
  givenname: Eduardo
  orcidid: 0000-0001-7089-3607
  surname: Carasek
  fullname: Carasek, Eduardo
  email: eduardo.carasek@ufsc.br
  organization: Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30967180$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFD8AFWeLCJWFsJ3ECp6rin1SJA3C2Zp3JrpckDrZD6bfHq20vPfQ0ntHvjcbvXbCz2c_E2GsBpQDRvD-UaLGUILoSZAlCPWMb0WpVVEpWZ2wDAKqQjYZzdhHjIbdSQPWCnSvoGi1a2LDfP9y8G4n3wS98cjZ4-pcC2uT8zN3MkXdNcUvjyJcRE_HBhwnTB37FY6KFJ3-Loee4Jp_HlF9zz_duty_SPvh1t1_WlGc43kUXX7LnA46RXt3XS_br86ef11-Lm-9fvl1f3RRWtSIViH0rGsBW16quehQgdUWD0nWLWnTbCmBQzVAPurbbHmStu0zqSlKtUQOpS_butHcJ_s9KMZnJRZv_gDP5NRopQYtGdKLJ6NtH6MGvId97pFQNUnWVytSbe2rdTtSbJbgJw515sDED-gRk_2IMNBjrEh49zF660Qgwx8DMweTAzDEwA9LkwLJSPFI-LH9K8_GkoWziX0fBROtottS7QDaZ3rsn1P8B1u6rkQ
CitedBy_id crossref_primary_10_1016_j_microc_2021_106437
crossref_primary_10_1016_j_aca_2024_343239
crossref_primary_10_1016_j_trac_2023_117171
crossref_primary_10_37349_eff_2024_00038
crossref_primary_10_3390_separations6030035
crossref_primary_10_1002_jssc_202100599
crossref_primary_10_1016_j_sampre_2023_100095
crossref_primary_10_1016_j_jpba_2020_113446
crossref_primary_10_1016_j_chroma_2022_463577
crossref_primary_10_1080_03067319_2020_1727462
crossref_primary_10_1016_j_trac_2023_117256
crossref_primary_10_1016_j_chroma_2022_463771
crossref_primary_10_3390_molecules26185666
crossref_primary_10_1002_jssc_202100682
crossref_primary_10_1016_j_aca_2023_341468
crossref_primary_10_1016_j_ecoenv_2023_115650
crossref_primary_10_1007_s13367_021_0016_y
crossref_primary_10_1016_j_chroma_2019_460790
crossref_primary_10_1016_j_jhazmat_2020_122403
crossref_primary_10_1021_acs_analchem_9b04735
crossref_primary_10_1016_j_trac_2021_116275
crossref_primary_10_1016_j_cogsc_2021_100481
crossref_primary_10_1002_jssc_202001157
crossref_primary_10_1016_j_trac_2023_117120
crossref_primary_10_1016_j_scitotenv_2021_152448
crossref_primary_10_1016_j_chroma_2020_461088
crossref_primary_10_1002_elps_202100390
crossref_primary_10_1016_j_aca_2023_340858
crossref_primary_10_1016_j_snb_2022_131993
crossref_primary_10_1111_wej_12969
crossref_primary_10_1016_j_greeac_2022_100023
crossref_primary_10_1002_mas_21624
crossref_primary_10_1016_j_scp_2021_100390
crossref_primary_10_1007_s11419_021_00582_x
crossref_primary_10_1039_D3AY00751K
crossref_primary_10_1186_s13007_022_00860_8
crossref_primary_10_1002_jssc_201900776
crossref_primary_10_1016_j_microc_2022_107863
crossref_primary_10_1002_jssc_202300223
crossref_primary_10_1039_D0CP04227G
crossref_primary_10_1080_10643389_2020_1720493
crossref_primary_10_1016_j_scp_2021_100478
crossref_primary_10_1016_j_talanta_2020_121759
crossref_primary_10_1039_D2AY01403C
crossref_primary_10_1016_j_microc_2024_110086
crossref_primary_10_1016_j_aca_2022_340627
crossref_primary_10_1021_acs_analchem_9b04677
crossref_primary_10_1002_jssc_202300215
crossref_primary_10_1016_j_aca_2022_339829
crossref_primary_10_1186_s40543_021_00296_0
crossref_primary_10_1063_5_0085592
crossref_primary_10_1002_jssc_202000045
crossref_primary_10_1016_j_trac_2024_117924
crossref_primary_10_3390_magnetochemistry8030029
crossref_primary_10_1016_j_microc_2023_108515
crossref_primary_10_1016_j_trac_2020_115864
crossref_primary_10_1016_j_chroma_2019_460416
crossref_primary_10_1021_acs_analchem_5c00264
crossref_primary_10_1007_s00216_022_04504_7
crossref_primary_10_1016_j_seppur_2024_126979
crossref_primary_10_1002_jssc_202000923
Cites_doi 10.1002/jssc.201100777
10.1016/j.aca.2016.06.039
10.1016/j.aca.2016.01.015
10.1016/j.jchromb.2018.06.037
10.1016/j.aca.2016.06.014
10.1007/s00216-017-0823-7
10.1021/ac960814r
10.1016/j.aca.2017.09.047
10.4028/www.scientific.net/AMR.726-731.74
10.1039/c004678g
10.1016/j.chroma.2018.06.025
10.1016/j.talanta.2014.05.033
10.1016/j.chroma.2017.04.012
10.1039/c1py00044f
10.1021/ac960145h
10.1016/j.talanta.2017.01.079
10.1021/ac504260t
10.1016/j.aca.2014.04.038
10.1016/j.talanta.2017.05.021
10.1016/j.chroma.2007.02.117
10.1016/j.trac.2018.06.010
10.1016/j.trac.2015.04.017
10.1016/j.chroma.2014.01.003
10.1016/j.chroma.2018.01.023
10.1021/ac034506m
10.1016/j.microc.2013.07.009
10.1016/j.talanta.2017.12.044
10.1016/j.chroma.2018.08.013
10.1016/j.aca.2014.04.031
10.1016/j.aca.2011.08.022
10.1016/j.aca.2018.07.032
10.1021/cm504202v
10.1016/j.aca.2015.11.038
10.1016/j.chroma.2009.10.089
10.1016/j.chroma.2016.08.007
10.1016/j.jcis.2014.04.023
10.1016/j.orggeochem.2011.01.009
10.1016/j.talanta.2018.02.101
10.1016/j.aca.2016.06.011
10.1016/j.aca.2017.06.024
10.1016/j.trac.2009.10.003
10.1007/s00216-017-0755-2
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jul 31, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jul 31, 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7TK
7TM
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.aca.2019.02.013
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
EndPage 166
ExternalDocumentID 30967180
10_1016_j_aca_2019_02_013
S0003267019301874
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
MVM
NHB
R2-
RIG
SCB
SEW
SSH
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7TK
7TM
7U5
7U7
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c381t-aad8160a875354da10274ef3758a719b400f36f5f75cbd02579753742e57a70e3
IEDL.DBID AIKHN
ISSN 0003-2670
1873-4324
IngestDate Fri Sep 05 11:00:45 EDT 2025
Wed Aug 13 09:16:54 EDT 2025
Wed Feb 19 02:31:58 EST 2025
Tue Jul 01 01:11:45 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Fri Feb 23 02:29:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-throughput
Sample preparation
Endocrine disrupters compounds
Parallel single drop microextraction
Magnetic ionic liquids
96-well plate
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-aad8160a875354da10274ef3758a719b400f36f5f75cbd02579753742e57a70e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6915-8752
0000-0001-7089-3607
PMID 30967180
PQID 2235023943
PQPubID 2045283
PageCount 8
ParticipantIDs proquest_miscellaneous_2207161916
proquest_journals_2235023943
pubmed_primary_30967180
crossref_citationtrail_10_1016_j_aca_2019_02_013
crossref_primary_10_1016_j_aca_2019_02_013
elsevier_sciencedirect_doi_10_1016_j_aca_2019_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-31
PublicationDateYYYYMMDD 2019-07-31
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-31
  day: 31
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Fang (bib10) 2011; 42
Jeannot, Cantwell (bib5) 1997; 69
Yamini, Rezazadeh, Seidi (bib7) 2018; 112
Nacham (bib15) 2015; 27
SANTE/11813/2017, Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed., E. COMMISSION and D.G.F.H.A.F. SAFETY, Editors.
Cabaleiro (bib14) 2014; 129
Amjadi, Manzoori, Abulhassani (bib21) 2010; 93
Kocúrová, Balogh, Andruch (bib37) 2013; 110
Eibak (bib41) 2014; 828
Kirschner (bib35) 2017; 996
Clark (bib34) 2015; 87
Šrámková (bib38) 2014; 828
Souza-Silva (bib1) 2015; 71
Jeannot, Przyjazny, Kokosa (bib9) 2010; 1217
Wang (bib46) 2018; 1537
Román (bib12) 2014; 1330
Przyjazny (bib6) 2017
Šrámková (bib13) 2018; 184
Scovazzo (bib26) 2014; 428
Trujillo-Rodríguez, Pino, Anderson (bib24) 2017; 172
De Boeck (bib20) 2018; 180
Chatzimitakos (bib33) 2016; 910
Liu (bib16) 2003; 75
Merib (bib28) 2018; 410
Lopes (bib11) 2018; 21
Pawlinsyn (bib2) 2009
Trujillo-Rodríguez (bib30) 2016; 934
Martinis, Wuilloud (bib22) 2010; 25
AOAC (bib44) 2016
Fernández, Vidal, Canals (bib32) 2018; 410
Alexovič (bib36) 2016; 906
Chatzimitakos (bib27) 2018; 1571
Guo (bib18) 2012; 35
Alexovič (bib42) 2018; 1092
An (bib17) 2017; 1500
Pastor-Belda (bib47) 2018; 1564
Dobbelin, Llarena, Claros Marfil, Cabanero J, Mecerreyes (bib25) 2011; 2
Chisvert (bib43) 2017; 983
Hutchinson, Setkova, Pawliszyn (bib40) 2007; 1149
Clark (bib23) 2016; 934
An, Rahn, Anderson (bib31) 2017; 167
Šrámková (bib39) 2016; 934
Sarafraz-Yazdi, Amiri (bib3) 2010; 29
He (bib19) 2013; 726–731
Jain, Verma (bib8) 2011; 706
Liu, Dasgupta (bib4) 1996; 68
Yu, Merib, Anderson (bib29) 2016; 1463
Alexovič (10.1016/j.aca.2019.02.013_bib36) 2016; 906
Trujillo-Rodríguez (10.1016/j.aca.2019.02.013_bib24) 2017; 172
Jain (10.1016/j.aca.2019.02.013_bib8) 2011; 706
Fernández (10.1016/j.aca.2019.02.013_bib32) 2018; 410
Chatzimitakos (10.1016/j.aca.2019.02.013_bib27) 2018; 1571
Pawlinsyn (10.1016/j.aca.2019.02.013_bib2) 2009
Guo (10.1016/j.aca.2019.02.013_bib18) 2012; 35
10.1016/j.aca.2019.02.013_bib45
Cabaleiro (10.1016/j.aca.2019.02.013_bib14) 2014; 129
Chatzimitakos (10.1016/j.aca.2019.02.013_bib33) 2016; 910
Souza-Silva (10.1016/j.aca.2019.02.013_bib1) 2015; 71
Hutchinson (10.1016/j.aca.2019.02.013_bib40) 2007; 1149
An (10.1016/j.aca.2019.02.013_bib17) 2017; 1500
Clark (10.1016/j.aca.2019.02.013_bib34) 2015; 87
Jeannot (10.1016/j.aca.2019.02.013_bib5) 1997; 69
Nacham (10.1016/j.aca.2019.02.013_bib15) 2015; 27
Pastor-Belda (10.1016/j.aca.2019.02.013_bib47) 2018; 1564
Jeannot (10.1016/j.aca.2019.02.013_bib9) 2010; 1217
Šrámková (10.1016/j.aca.2019.02.013_bib39) 2016; 934
Yu (10.1016/j.aca.2019.02.013_bib29) 2016; 1463
Šrámková (10.1016/j.aca.2019.02.013_bib38) 2014; 828
Lopes (10.1016/j.aca.2019.02.013_bib11) 2018; 21
Merib (10.1016/j.aca.2019.02.013_bib28) 2018; 410
Kocúrová (10.1016/j.aca.2019.02.013_bib37) 2013; 110
Liu (10.1016/j.aca.2019.02.013_bib4) 1996; 68
Kirschner (10.1016/j.aca.2019.02.013_bib35) 2017; 996
AOAC (10.1016/j.aca.2019.02.013_bib44) 2016
Clark (10.1016/j.aca.2019.02.013_bib23) 2016; 934
Trujillo-Rodríguez (10.1016/j.aca.2019.02.013_bib30) 2016; 934
An (10.1016/j.aca.2019.02.013_bib31) 2017; 167
Šrámková (10.1016/j.aca.2019.02.013_bib13) 2018; 184
Martinis (10.1016/j.aca.2019.02.013_bib22) 2010; 25
Sarafraz-Yazdi (10.1016/j.aca.2019.02.013_bib3) 2010; 29
Alexovič (10.1016/j.aca.2019.02.013_bib42) 2018; 1092
Eibak (10.1016/j.aca.2019.02.013_bib41) 2014; 828
Amjadi (10.1016/j.aca.2019.02.013_bib21) 2010; 93
Przyjazny (10.1016/j.aca.2019.02.013_bib6) 2017
Román (10.1016/j.aca.2019.02.013_bib12) 2014; 1330
Liu (10.1016/j.aca.2019.02.013_bib16) 2003; 75
Wang (10.1016/j.aca.2019.02.013_bib46) 2018; 1537
He (10.1016/j.aca.2019.02.013_bib19) 2013; 726–731
Fang (10.1016/j.aca.2019.02.013_bib10) 2011; 42
Dobbelin (10.1016/j.aca.2019.02.013_bib25) 2011; 2
Yamini (10.1016/j.aca.2019.02.013_bib7) 2018; 112
Scovazzo (10.1016/j.aca.2019.02.013_bib26) 2014; 428
Chisvert (10.1016/j.aca.2019.02.013_bib43) 2017; 983
De Boeck (10.1016/j.aca.2019.02.013_bib20) 2018; 180
References_xml – volume: 828
  start-page: 46
  year: 2014
  end-page: 52
  ident: bib41
  article-title: Parallel electromembrane extraction in the 96-well format
  publication-title: Anal. Chim. Acta
– year: 2016
  ident: bib44
  article-title: Official Methods of Analysis - Guidelines for Standard Method Performance Requirements
– volume: 983
  start-page: 130
  year: 2017
  end-page: 140
  ident: bib43
  article-title: Introducing a new and rapid microextraction approach based on magnetic ionic liquids: stir bar dispersive liquid microextraction
  publication-title: Anal. Chim. Acta
– volume: 69
  start-page: 235
  year: 1997
  end-page: 239
  ident: bib5
  article-title: Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle
  publication-title: Anal. Chem.
– volume: 35
  start-page: 452
  year: 2012
  end-page: 458
  ident: bib18
  article-title: Ionic liquid-based single-drop liquid-phase microextraction combined with high-performance liquid chromatography for the determination of sulfonamides in environmental water
  publication-title: J. Separ. Sci.
– volume: 167
  start-page: 268
  year: 2017
  end-page: 278
  ident: bib31
  article-title: Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents
  publication-title: Talanta
– volume: 184
  start-page: 162
  year: 2018
  end-page: 172
  ident: bib13
  article-title: Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated Lab-In-Syringe technique
  publication-title: Talanta
– volume: 71
  start-page: 249
  year: 2015
  end-page: 264
  ident: bib1
  article-title: A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications
  publication-title: Trac. Trends Anal. Chem.
– volume: 1330
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib12
  article-title: Rapid determination of octanol–water partition coefficient using vortex-assisted liquid–liquid microextraction
  publication-title: J. Chromatogr. A
– reference: SANTE/11813/2017, Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed., E. COMMISSION and D.G.F.H.A.F. SAFETY, Editors.
– volume: 428
  start-page: 16
  year: 2014
  end-page: 23
  ident: bib26
  article-title: Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields
  publication-title: J. Colloid Interface Sci.
– volume: 1463
  start-page: 11
  year: 2016
  end-page: 19
  ident: bib29
  article-title: Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents
  publication-title: J. Chromatogr. A
– volume: 1537
  start-page: 35
  year: 2018
  end-page: 42
  ident: bib46
  article-title: Magnetic mesoporous molecularly imprinted polymers based on surface precipitation polymerization for selective enrichment of triclosan and triclocarban
  publication-title: J. Chromatogr. A
– volume: 21
  start-page: 33
  year: 2018
  end-page: 40
  ident: bib11
  article-title: Hollow-fiber renewal liquid membrane extraction coupled with 96-well plate system as innovative high-throughput configuration for the determination of endocrine disrupting compounds by high-performance liquid chromatography-fluorescence and diode array detection
  publication-title: Anal. Chim. Acta
– volume: 828
  start-page: 53
  year: 2014
  end-page: 60
  ident: bib38
  article-title: Automated in-syringe single-drop head-space micro-extraction applied to the determination of ethanol in wine samples
  publication-title: Anal. Chim. Acta
– volume: 27
  start-page: 923
  year: 2015
  end-page: 931
  ident: bib15
  article-title: Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids
  publication-title: Chem. Mater.
– volume: 934
  start-page: 132
  year: 2016
  end-page: 144
  ident: bib39
  article-title: A novel approach to Lab-In-Syringe Head-Space Single-Drop Microextraction and on-drop sensing of ammonia
  publication-title: Anal. Chim. Acta
– volume: 42
  start-page: 316
  year: 2011
  end-page: 322
  ident: bib10
  article-title: Optimization of headspace single-drop microextraction technique for extraction of light hydrocarbons (C6–C12) and its potential applications
  publication-title: Org. Geochem.
– volume: 934
  start-page: 106
  year: 2016
  end-page: 113
  ident: bib30
  article-title: Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons
  publication-title: Anal. Chim. Acta
– volume: 110
  start-page: 599
  year: 2013
  end-page: 607
  ident: bib37
  article-title: Solvent microextraction: a review of recent efforts at automation
  publication-title: Microchem. J.
– volume: 180
  start-page: 292
  year: 2018
  end-page: 299
  ident: bib20
  article-title: Fast and easy extraction of antidepressants from whole blood using ionic liquids as extraction solvent
  publication-title: Talanta
– volume: 29
  start-page: 1
  year: 2010
  end-page: 14
  ident: bib3
  article-title: Liquid-phase microextraction
  publication-title: Trac. Trends Anal. Chem.
– volume: 726–731
  start-page: 74
  year: 2013
  end-page: 80
  ident: bib19
  article-title: Determination of trace PCB in water by GC-MS with ionic liquid based headspace single-drop microextraction under ultrasound
  publication-title: Adv. Mater. Res.
– volume: 1217
  start-page: 2326
  year: 2010
  end-page: 2336
  ident: bib9
  article-title: Single drop microextraction—development, applications and future trends
  publication-title: J. Chromatogr. A
– volume: 25
  start-page: 1432
  year: 2010
  end-page: 1439
  ident: bib22
  article-title: Cold vapor ionic liquid-assisted headspace single-drop microextraction: a novel preconcentration technique for mercury species determination in complex matrix samples
  publication-title: J. Anal. At. Spectrom.
– volume: 934
  start-page: 9
  year: 2016
  end-page: 21
  ident: bib23
  article-title: Magnetic ionic liquids in analytical chemistry: a review
  publication-title: Anal. Chim. Acta
– volume: 906
  start-page: 22
  year: 2016
  end-page: 40
  ident: bib36
  article-title: Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: approaches based on extractant drop-, plug-, film- and microflow-formation
  publication-title: Anal. Chim. Acta
– volume: 996
  start-page: 29
  year: 2017
  end-page: 37
  ident: bib35
  article-title: Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system
  publication-title: Anal. Chim. Acta
– volume: 410
  start-page: 4679
  year: 2018
  end-page: 4687
  ident: bib32
  article-title: Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry
  publication-title: Anal. Bioanal. Chem.
– volume: 1571
  start-page: 47
  year: 2018
  end-page: 54
  ident: bib27
  article-title: Enhanced magnetic ionic liquid-based dispersive liquid-liquid microextraction of triazines and sulfonamides through a one-pot, pH-modulated approach
  publication-title: J. Chromatogr. A
– volume: 87
  start-page: 1552
  year: 2015
  end-page: 1559
  ident: bib34
  article-title: Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis
  publication-title: Anal. Chem.
– volume: 129
  start-page: 113
  year: 2014
  end-page: 118
  ident: bib14
  article-title: Coumarins as turn on/off fluorescent probes for detection of residual acetone in cosmetics following headspace single-drop microextraction
  publication-title: Talanta
– volume: 2
  start-page: 1275
  year: 2011
  end-page: 1278
  ident: bib25
  article-title: Synthesis of paramagnetic polymers using ionic liquid chemistry
  publication-title: Polym. Chem.
– volume: 1564
  start-page: 102
  year: 2018
  end-page: 109
  ident: bib47
  article-title: Magnetic carbon nanotube composite for the preconcentration of parabens from water and urine samples using dispersive solid phase extraction
  publication-title: J. Chromatogr. A
– volume: 68
  start-page: 1817
  year: 1996
  end-page: 1821
  ident: bib4
  article-title: Analytical chemistry in a drop. Solvent extraction in a microdrop
  publication-title: Anal. Chem.
– volume: 1500
  start-page: 1
  year: 2017
  end-page: 23
  ident: bib17
  article-title: Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems
  publication-title: J. Chromatogr. A
– volume: 93
  start-page: 985
  year: 2010
  end-page: 991
  ident: bib21
  article-title: Ionic liquid-based, single-drop microextraction for preconcentration of cobalt before its determination by electrothermal atomic absorption spectrometry
  publication-title: J. AOAC Int.
– volume: 910
  start-page: 53
  year: 2016
  end-page: 59
  ident: bib33
  article-title: Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals
  publication-title: Anal. Chim. Acta
– volume: 172
  start-page: 86
  year: 2017
  end-page: 94
  ident: bib24
  article-title: Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction
  publication-title: Talanta
– volume: 706
  start-page: 37
  year: 2011
  end-page: 65
  ident: bib8
  article-title: Recent advances in applications of single-drop microextraction: a review
  publication-title: Anal. Chim. Acta
– volume: 75
  start-page: 5870
  year: 2003
  end-page: 5876
  ident: bib16
  article-title: Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons
  publication-title: Anal. Chem.
– volume: 1092
  start-page: 402
  year: 2018
  end-page: 421
  ident: bib42
  article-title: Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals
  publication-title: J. Chromatogr. B
– year: 2017
  ident: bib6
  article-title: Liquid-phase microextraction
  publication-title: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering
– volume: 112
  start-page: 264
  year: 2018
  end-page: 272
  ident: bib7
  article-title: Liquid-phase microextraction – the different principles and configurations
  publication-title: Trac. Trends Anal. Chem.
– year: 2009
  ident: bib2
  article-title: Handbook of Solid Phase Microextraction
– volume: 1149
  start-page: 127
  year: 2007
  end-page: 137
  ident: bib40
  article-title: Automation of solid-phase microextraction on a 96-well plate format
  publication-title: J. Chromatogr. A
– volume: 410
  start-page: 4689
  year: 2018
  end-page: 4699
  ident: bib28
  article-title: Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection
  publication-title: Anal. Bioanal. Chem.
– volume: 35
  start-page: 452
  issue: 3
  year: 2012
  ident: 10.1016/j.aca.2019.02.013_bib18
  article-title: Ionic liquid-based single-drop liquid-phase microextraction combined with high-performance liquid chromatography for the determination of sulfonamides in environmental water
  publication-title: J. Separ. Sci.
  doi: 10.1002/jssc.201100777
– volume: 934
  start-page: 132
  year: 2016
  ident: 10.1016/j.aca.2019.02.013_bib39
  article-title: A novel approach to Lab-In-Syringe Head-Space Single-Drop Microextraction and on-drop sensing of ammonia
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.06.039
– volume: 910
  start-page: 53
  year: 2016
  ident: 10.1016/j.aca.2019.02.013_bib33
  article-title: Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.01.015
– volume: 1092
  start-page: 402
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib42
  article-title: Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2018.06.037
– volume: 934
  start-page: 106
  year: 2016
  ident: 10.1016/j.aca.2019.02.013_bib30
  article-title: Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.06.014
– volume: 410
  start-page: 4689
  issue: 19
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib28
  article-title: Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-017-0823-7
– volume: 69
  start-page: 235
  issue: 2
  year: 1997
  ident: 10.1016/j.aca.2019.02.013_bib5
  article-title: Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle
  publication-title: Anal. Chem.
  doi: 10.1021/ac960814r
– volume: 996
  start-page: 29
  year: 2017
  ident: 10.1016/j.aca.2019.02.013_bib35
  article-title: Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.09.047
– volume: 726–731
  start-page: 74
  year: 2013
  ident: 10.1016/j.aca.2019.02.013_bib19
  article-title: Determination of trace PCB in water by GC-MS with ionic liquid based headspace single-drop microextraction under ultrasound
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.726-731.74
– volume: 25
  start-page: 1432
  issue: 9
  year: 2010
  ident: 10.1016/j.aca.2019.02.013_bib22
  article-title: Cold vapor ionic liquid-assisted headspace single-drop microextraction: a novel preconcentration technique for mercury species determination in complex matrix samples
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/c004678g
– volume: 93
  start-page: 985
  issue: 3
  year: 2010
  ident: 10.1016/j.aca.2019.02.013_bib21
  article-title: Ionic liquid-based, single-drop microextraction for preconcentration of cobalt before its determination by electrothermal atomic absorption spectrometry
  publication-title: J. AOAC Int.
– year: 2009
  ident: 10.1016/j.aca.2019.02.013_bib2
– volume: 1564
  start-page: 102
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib47
  article-title: Magnetic carbon nanotube composite for the preconcentration of parabens from water and urine samples using dispersive solid phase extraction
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2018.06.025
– volume: 129
  start-page: 113
  year: 2014
  ident: 10.1016/j.aca.2019.02.013_bib14
  article-title: Coumarins as turn on/off fluorescent probes for detection of residual acetone in cosmetics following headspace single-drop microextraction
  publication-title: Talanta
  doi: 10.1016/j.talanta.2014.05.033
– volume: 1500
  start-page: 1
  year: 2017
  ident: 10.1016/j.aca.2019.02.013_bib17
  article-title: Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2017.04.012
– volume: 2
  start-page: 1275
  year: 2011
  ident: 10.1016/j.aca.2019.02.013_bib25
  article-title: Synthesis of paramagnetic polymers using ionic liquid chemistry
  publication-title: Polym. Chem.
  doi: 10.1039/c1py00044f
– volume: 68
  start-page: 1817
  issue: 11
  year: 1996
  ident: 10.1016/j.aca.2019.02.013_bib4
  article-title: Analytical chemistry in a drop. Solvent extraction in a microdrop
  publication-title: Anal. Chem.
  doi: 10.1021/ac960145h
– volume: 167
  start-page: 268
  year: 2017
  ident: 10.1016/j.aca.2019.02.013_bib31
  article-title: Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.01.079
– volume: 87
  start-page: 1552
  issue: 3
  year: 2015
  ident: 10.1016/j.aca.2019.02.013_bib34
  article-title: Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis
  publication-title: Anal. Chem.
  doi: 10.1021/ac504260t
– ident: 10.1016/j.aca.2019.02.013_bib45
– volume: 828
  start-page: 46
  year: 2014
  ident: 10.1016/j.aca.2019.02.013_bib41
  article-title: Parallel electromembrane extraction in the 96-well format
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.04.038
– year: 2016
  ident: 10.1016/j.aca.2019.02.013_bib44
– volume: 172
  start-page: 86
  year: 2017
  ident: 10.1016/j.aca.2019.02.013_bib24
  article-title: Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.05.021
– volume: 1149
  start-page: 127
  issue: 2
  year: 2007
  ident: 10.1016/j.aca.2019.02.013_bib40
  article-title: Automation of solid-phase microextraction on a 96-well plate format
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2007.02.117
– volume: 112
  start-page: 264
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib7
  article-title: Liquid-phase microextraction – the different principles and configurations
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.06.010
– volume: 71
  start-page: 249
  year: 2015
  ident: 10.1016/j.aca.2019.02.013_bib1
  article-title: A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2015.04.017
– volume: 1330
  start-page: 1
  year: 2014
  ident: 10.1016/j.aca.2019.02.013_bib12
  article-title: Rapid determination of octanol–water partition coefficient using vortex-assisted liquid–liquid microextraction
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2014.01.003
– volume: 1537
  start-page: 35
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib46
  article-title: Magnetic mesoporous molecularly imprinted polymers based on surface precipitation polymerization for selective enrichment of triclosan and triclocarban
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2018.01.023
– volume: 75
  start-page: 5870
  issue: 21
  year: 2003
  ident: 10.1016/j.aca.2019.02.013_bib16
  article-title: Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons
  publication-title: Anal. Chem.
  doi: 10.1021/ac034506m
– volume: 110
  start-page: 599
  year: 2013
  ident: 10.1016/j.aca.2019.02.013_bib37
  article-title: Solvent microextraction: a review of recent efforts at automation
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2013.07.009
– volume: 180
  start-page: 292
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib20
  article-title: Fast and easy extraction of antidepressants from whole blood using ionic liquids as extraction solvent
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.12.044
– volume: 1571
  start-page: 47
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib27
  article-title: Enhanced magnetic ionic liquid-based dispersive liquid-liquid microextraction of triazines and sulfonamides through a one-pot, pH-modulated approach
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2018.08.013
– volume: 828
  start-page: 53
  year: 2014
  ident: 10.1016/j.aca.2019.02.013_bib38
  article-title: Automated in-syringe single-drop head-space micro-extraction applied to the determination of ethanol in wine samples
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.04.031
– volume: 706
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.aca.2019.02.013_bib8
  article-title: Recent advances in applications of single-drop microextraction: a review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.08.022
– volume: 21
  start-page: 33
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib11
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.07.032
– volume: 27
  start-page: 923
  issue: 3
  year: 2015
  ident: 10.1016/j.aca.2019.02.013_bib15
  article-title: Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids
  publication-title: Chem. Mater.
  doi: 10.1021/cm504202v
– volume: 906
  start-page: 22
  year: 2016
  ident: 10.1016/j.aca.2019.02.013_bib36
  article-title: Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: approaches based on extractant drop-, plug-, film- and microflow-formation
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.11.038
– volume: 1217
  start-page: 2326
  issue: 16
  year: 2010
  ident: 10.1016/j.aca.2019.02.013_bib9
  article-title: Single drop microextraction—development, applications and future trends
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2009.10.089
– volume: 1463
  start-page: 11
  year: 2016
  ident: 10.1016/j.aca.2019.02.013_bib29
  article-title: Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.08.007
– volume: 428
  start-page: 16
  year: 2014
  ident: 10.1016/j.aca.2019.02.013_bib26
  article-title: Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.04.023
– volume: 42
  start-page: 316
  issue: 4
  year: 2011
  ident: 10.1016/j.aca.2019.02.013_bib10
  article-title: Optimization of headspace single-drop microextraction technique for extraction of light hydrocarbons (C6–C12) and its potential applications
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2011.01.009
– volume: 184
  start-page: 162
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib13
  article-title: Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated Lab-In-Syringe technique
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.02.101
– volume: 934
  start-page: 9
  year: 2016
  ident: 10.1016/j.aca.2019.02.013_bib23
  article-title: Magnetic ionic liquids in analytical chemistry: a review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.06.011
– volume: 983
  start-page: 130
  year: 2017
  ident: 10.1016/j.aca.2019.02.013_bib43
  article-title: Introducing a new and rapid microextraction approach based on magnetic ionic liquids: stir bar dispersive liquid microextraction
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.06.024
– volume: 29
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.aca.2019.02.013_bib3
  article-title: Liquid-phase microextraction
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.10.003
– volume: 410
  start-page: 4679
  issue: 19
  year: 2018
  ident: 10.1016/j.aca.2019.02.013_bib32
  article-title: Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-017-0755-2
– year: 2017
  ident: 10.1016/j.aca.2019.02.013_bib6
  article-title: Liquid-phase microextraction
SSID ssj0002104
Score 2.5330102
Snippet In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as...
In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P ] [MnCl ] magnetic ionic liquid (MIL) as...
In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42-] magnetic ionic liquid (MIL) as...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 159
SubjectTerms 96-well plate
Acetonitrile
Benzophenone
Bisphenol A
Dilution
Endocrine disrupters compounds
High-throughput
Ionic liquids
Ions
Magnetic ionic liquids
Mathematical analysis
Parallel single drop microextraction
Propyl paraben
Sample preparation
Triclocarban
Title Single drop microextraction in a 96-well plate format: A step toward automated and high-throughput analysis
URI https://dx.doi.org/10.1016/j.aca.2019.02.013
https://www.ncbi.nlm.nih.gov/pubmed/30967180
https://www.proquest.com/docview/2235023943
https://www.proquest.com/docview/2207161916
Volume 1063
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWBBvCkvGYkJKZDUcZKyVRWogGABJDbL8UMqlDQq6cpv5y5xKjHAwJb4IVl39t139j0AzkIXceO0DVLUJkEsMh0opdPApVzg4cMDVVdReHhMRi_x3at4XYJhGwtDbpVe9jcyvZbWvuXSU_OyHI8pxjdE7EHpxHldWW4ZVnq8n4gOrAxu70ePC4GMVk3cFs6jCe3jZu3mpTRlH4r6debOiP-mnn6Dn7UautmAdY8f2aBZ4iYs2WILVodt2bZteH9CZTSxzMymJfsgdzsUv7MmfIGNC6ZYPwnoxo6VE8SZrAGtV2zAkN8lq2o3Wqbm1RSbLX4VhlFO48BX9CnnFbY1mUx24OXm-nk4CnxFhUCjZq6QDSaLklCRkSJioyIySq3jaDSoNOrneKAdT5xwqdC5QTiUUtwtWs9WpCoNLd-FTjEt7D6wzOicE0m5CmNn0GrjmREOOYLqL8t1F8KWkFL7dONU9WIiW7-yN4m0l0R7GfYk0r4L54spZZNr46_Bccsd-WPDSNQFf007ajkp_Wn9lAiRRF0jHrtPF93IN3o8UYWdzmkMgjG0NqOkC3vNDlgskqMdiDo-PPjfmg5hjf6aG-Mj6FSzuT1GqFPlJ7B88RWd-A39DVc2-ls
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BPcCloqVACm0XqadKBpv1eh1uKCpKeV0apNxW631IgeBYqXPtb2dmbQdxSA7crH1Iq5mdmW-88wD4GfuEW29cJNGaRKnITaS1kZGXXKDwoUCFLgp399nwIb0ei_EGDLpcGAqrbHV_o9ODtm5HzlpqnlWTCeX4xog9qJw4D53lNuFDKrikuL7T_69xHujTpF3bPFrePW2GIC9tqPZQ0g91OxO-yjitAp_BCF3twscWPbLL5oCfYMOVn2F70DVt24Onv2iKpo7Z-axizxRsh8p33iQvsEnJNOtnEf2vY9UUUSZrIOsFu2TI7YrVIYiW6UU9w2GHX6VlVNE4avv5VIsax5o6Jl_g4er3aDCM2n4KkUG7XCMTbJ5ksSYXRaRWJ-SSOo8ky7VM-gWKs-eZF14KU1gEQ5KybtF3dkJqGTu-D1vlrHSHwHJrCk4k5TpOvUWfjedWeOQHGr-8MD2IO0Iq0xYbp54XU9VFlT0qpL0i2qv4XCHte_BruaVqKm2sW5x23FFvrotCS7Bu23HHSdXK6j-FAEmEDvE4fbKcRr7R04ku3WxBaxCKoa-ZZD04aG7A8pAcvUC08PHX953pB2wPR3e36vbP_c0R7NBM8-_4GLbq-cJ9Q9BTF9_DpX4Bb8D7Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+drop+microextraction+in+a+96-well+plate+format%3A+A+step+toward+automated+and+high-throughput+analysis&rft.jtitle=Analytica+chimica+acta&rft.au=Mafra%2C+Gabriela&rft.au=Vieira%2C+Augusto+A&rft.au=Merib%2C+Josias&rft.au=Anderson%2C+Jared+L&rft.date=2019-07-31&rft.issn=1873-4324&rft.eissn=1873-4324&rft.volume=1063&rft.spage=159&rft_id=info:doi/10.1016%2Fj.aca.2019.02.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon