Single drop microextraction in a 96-well plate format: A step toward automated and high-throughput analysis
In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butyl...
Saved in:
Published in | Analytica chimica acta Vol. 1063; pp. 159 - 166 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
31.07.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0003-2670 1873-4324 1873-4324 |
DOI | 10.1016/j.aca.2019.02.013 |
Cover
Abstract | In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L−1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4–20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%.
[Display omitted]
•A novel magnetic ionic liquid-based methodology named Parallel Single Drop Microextraction (Pa-SDME) is proposed.•The semi-automated methodology exhibited high-throughput and environmentally-friendly aspects.•This configuration allows for the extraction of up to 96 samples simultaneously.•Very satisfactory stability and analytical performance were obtained. |
---|---|
AbstractList | In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L−1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4–20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%. In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42-] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L-1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4-20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%.In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42-] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L-1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4-20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%. In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L−1 and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4–20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%. [Display omitted] •A novel magnetic ionic liquid-based methodology named Parallel Single Drop Microextraction (Pa-SDME) is proposed.•The semi-automated methodology exhibited high-throughput and environmentally-friendly aspects.•This configuration allows for the extraction of up to 96 samples simultaneously.•Very satisfactory stability and analytical performance were obtained. In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P ] [MnCl ] magnetic ionic liquid (MIL) as extraction phase is demonstrated, for the first time, in the determination of methylparaben, ethylparaben, propylparaben, bisphenol A, butylparaben, benzophenone and triclocarban from environmental aqueous samples. This experimental setup comprised of a 96-well plate system containing a set of magnetic pins which aided in stabilizing the MIL drops and enabled the simultaneous extraction of up to 96 samples. Using this low-cost experimental apparatus, the sample throughput was lower than 1 min per sample. This novel approach exhibits a number of advantages over classical SDME approaches, particularly in maintaining a stable solvent microdrop and facilitating high-throughput analysis. Experimental conditions were carefully optimized using one-factor-at-a-time and multivariate designs. The optimal conditions employed 5.38 ± 0.55 mg (n = 10) of MIL, a sample volume of 1.5 mL at pH 6, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were determined under the optimized conditions and highly satisfactory results were achieved, with LODs ranging from 1.5 to 3 μg L and coefficients of determination higher than 0.994. Intraday and interday precision ranged from 0.6 to 21.3% (n = 3) and 10.4-20.2% (n = 9), respectively, with analyte relative recovery in three aqueous samples ranging between 63% and 126%. |
Author | Mafra, Gabriela Merib, Josias Vieira, Augusto A. Anderson, Jared L. Carasek, Eduardo |
Author_xml | – sequence: 1 givenname: Gabriela surname: Mafra fullname: Mafra, Gabriela organization: Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil – sequence: 2 givenname: Augusto A. surname: Vieira fullname: Vieira, Augusto A. organization: Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil – sequence: 3 givenname: Josias surname: Merib fullname: Merib, Josias email: josias@ufcspa.edu.br organization: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil – sequence: 4 givenname: Jared L. orcidid: 0000-0001-6915-8752 surname: Anderson fullname: Anderson, Jared L. organization: Department of Chemistry, Iowa State University, Ames, IA, 50011, USA – sequence: 5 givenname: Eduardo orcidid: 0000-0001-7089-3607 surname: Carasek fullname: Carasek, Eduardo email: eduardo.carasek@ufsc.br organization: Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30967180$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFD8AFWeLCJWFsJ3ECp6rin1SJA3C2Zp3JrpckDrZD6bfHq20vPfQ0ntHvjcbvXbCz2c_E2GsBpQDRvD-UaLGUILoSZAlCPWMb0WpVVEpWZ2wDAKqQjYZzdhHjIbdSQPWCnSvoGi1a2LDfP9y8G4n3wS98cjZ4-pcC2uT8zN3MkXdNcUvjyJcRE_HBhwnTB37FY6KFJ3-Loee4Jp_HlF9zz_duty_SPvh1t1_WlGc43kUXX7LnA46RXt3XS_br86ef11-Lm-9fvl1f3RRWtSIViH0rGsBW16quehQgdUWD0nWLWnTbCmBQzVAPurbbHmStu0zqSlKtUQOpS_butHcJ_s9KMZnJRZv_gDP5NRopQYtGdKLJ6NtH6MGvId97pFQNUnWVytSbe2rdTtSbJbgJw515sDED-gRk_2IMNBjrEh49zF660Qgwx8DMweTAzDEwA9LkwLJSPFI-LH9K8_GkoWziX0fBROtottS7QDaZ3rsn1P8B1u6rkQ |
CitedBy_id | crossref_primary_10_1016_j_microc_2021_106437 crossref_primary_10_1016_j_aca_2024_343239 crossref_primary_10_1016_j_trac_2023_117171 crossref_primary_10_37349_eff_2024_00038 crossref_primary_10_3390_separations6030035 crossref_primary_10_1002_jssc_202100599 crossref_primary_10_1016_j_sampre_2023_100095 crossref_primary_10_1016_j_jpba_2020_113446 crossref_primary_10_1016_j_chroma_2022_463577 crossref_primary_10_1080_03067319_2020_1727462 crossref_primary_10_1016_j_trac_2023_117256 crossref_primary_10_1016_j_chroma_2022_463771 crossref_primary_10_3390_molecules26185666 crossref_primary_10_1002_jssc_202100682 crossref_primary_10_1016_j_aca_2023_341468 crossref_primary_10_1016_j_ecoenv_2023_115650 crossref_primary_10_1007_s13367_021_0016_y crossref_primary_10_1016_j_chroma_2019_460790 crossref_primary_10_1016_j_jhazmat_2020_122403 crossref_primary_10_1021_acs_analchem_9b04735 crossref_primary_10_1016_j_trac_2021_116275 crossref_primary_10_1016_j_cogsc_2021_100481 crossref_primary_10_1002_jssc_202001157 crossref_primary_10_1016_j_trac_2023_117120 crossref_primary_10_1016_j_scitotenv_2021_152448 crossref_primary_10_1016_j_chroma_2020_461088 crossref_primary_10_1002_elps_202100390 crossref_primary_10_1016_j_aca_2023_340858 crossref_primary_10_1016_j_snb_2022_131993 crossref_primary_10_1111_wej_12969 crossref_primary_10_1016_j_greeac_2022_100023 crossref_primary_10_1002_mas_21624 crossref_primary_10_1016_j_scp_2021_100390 crossref_primary_10_1007_s11419_021_00582_x crossref_primary_10_1039_D3AY00751K crossref_primary_10_1186_s13007_022_00860_8 crossref_primary_10_1002_jssc_201900776 crossref_primary_10_1016_j_microc_2022_107863 crossref_primary_10_1002_jssc_202300223 crossref_primary_10_1039_D0CP04227G crossref_primary_10_1080_10643389_2020_1720493 crossref_primary_10_1016_j_scp_2021_100478 crossref_primary_10_1016_j_talanta_2020_121759 crossref_primary_10_1039_D2AY01403C crossref_primary_10_1016_j_microc_2024_110086 crossref_primary_10_1016_j_aca_2022_340627 crossref_primary_10_1021_acs_analchem_9b04677 crossref_primary_10_1002_jssc_202300215 crossref_primary_10_1016_j_aca_2022_339829 crossref_primary_10_1186_s40543_021_00296_0 crossref_primary_10_1063_5_0085592 crossref_primary_10_1002_jssc_202000045 crossref_primary_10_1016_j_trac_2024_117924 crossref_primary_10_3390_magnetochemistry8030029 crossref_primary_10_1016_j_microc_2023_108515 crossref_primary_10_1016_j_trac_2020_115864 crossref_primary_10_1016_j_chroma_2019_460416 crossref_primary_10_1021_acs_analchem_5c00264 crossref_primary_10_1007_s00216_022_04504_7 crossref_primary_10_1016_j_seppur_2024_126979 crossref_primary_10_1002_jssc_202000923 |
Cites_doi | 10.1002/jssc.201100777 10.1016/j.aca.2016.06.039 10.1016/j.aca.2016.01.015 10.1016/j.jchromb.2018.06.037 10.1016/j.aca.2016.06.014 10.1007/s00216-017-0823-7 10.1021/ac960814r 10.1016/j.aca.2017.09.047 10.4028/www.scientific.net/AMR.726-731.74 10.1039/c004678g 10.1016/j.chroma.2018.06.025 10.1016/j.talanta.2014.05.033 10.1016/j.chroma.2017.04.012 10.1039/c1py00044f 10.1021/ac960145h 10.1016/j.talanta.2017.01.079 10.1021/ac504260t 10.1016/j.aca.2014.04.038 10.1016/j.talanta.2017.05.021 10.1016/j.chroma.2007.02.117 10.1016/j.trac.2018.06.010 10.1016/j.trac.2015.04.017 10.1016/j.chroma.2014.01.003 10.1016/j.chroma.2018.01.023 10.1021/ac034506m 10.1016/j.microc.2013.07.009 10.1016/j.talanta.2017.12.044 10.1016/j.chroma.2018.08.013 10.1016/j.aca.2014.04.031 10.1016/j.aca.2011.08.022 10.1016/j.aca.2018.07.032 10.1021/cm504202v 10.1016/j.aca.2015.11.038 10.1016/j.chroma.2009.10.089 10.1016/j.chroma.2016.08.007 10.1016/j.jcis.2014.04.023 10.1016/j.orggeochem.2011.01.009 10.1016/j.talanta.2018.02.101 10.1016/j.aca.2016.06.011 10.1016/j.aca.2017.06.024 10.1016/j.trac.2009.10.003 10.1007/s00216-017-0755-2 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jul 31, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jul 31, 2019 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7TK 7TM 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1016/j.aca.2019.02.013 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-4324 |
EndPage | 166 |
ExternalDocumentID | 30967180 10_1016_j_aca_2019_02_013 S0003267019301874 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ABYKQ ACBEA ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSJ SSK SSU SSZ T5K TN5 TWZ UPT WH7 YK3 ZMT ~02 ~G- .GJ 3O- 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FEDTE FGOYB HMU HVGLF HZ~ H~9 MVM NHB R2- RIG SCB SEW SSH T9H UQL VH1 WUQ XOL XPP ZCG ZXP ZY4 NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7TK 7TM 7U5 7U7 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c381t-aad8160a875354da10274ef3758a719b400f36f5f75cbd02579753742e57a70e3 |
IEDL.DBID | AIKHN |
ISSN | 0003-2670 1873-4324 |
IngestDate | Fri Sep 05 11:00:45 EDT 2025 Wed Aug 13 09:16:54 EDT 2025 Wed Feb 19 02:31:58 EST 2025 Tue Jul 01 01:11:45 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Fri Feb 23 02:29:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-throughput Sample preparation Endocrine disrupters compounds Parallel single drop microextraction Magnetic ionic liquids 96-well plate |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-aad8160a875354da10274ef3758a719b400f36f5f75cbd02579753742e57a70e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6915-8752 0000-0001-7089-3607 |
PMID | 30967180 |
PQID | 2235023943 |
PQPubID | 2045283 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2207161916 proquest_journals_2235023943 pubmed_primary_30967180 crossref_citationtrail_10_1016_j_aca_2019_02_013 crossref_primary_10_1016_j_aca_2019_02_013 elsevier_sciencedirect_doi_10_1016_j_aca_2019_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-31 |
PublicationDateYYYYMMDD | 2019-07-31 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Analytica chimica acta |
PublicationTitleAlternate | Anal Chim Acta |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Fang (bib10) 2011; 42 Jeannot, Cantwell (bib5) 1997; 69 Yamini, Rezazadeh, Seidi (bib7) 2018; 112 Nacham (bib15) 2015; 27 SANTE/11813/2017, Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed., E. COMMISSION and D.G.F.H.A.F. SAFETY, Editors. Cabaleiro (bib14) 2014; 129 Amjadi, Manzoori, Abulhassani (bib21) 2010; 93 Kocúrová, Balogh, Andruch (bib37) 2013; 110 Eibak (bib41) 2014; 828 Kirschner (bib35) 2017; 996 Clark (bib34) 2015; 87 Šrámková (bib38) 2014; 828 Souza-Silva (bib1) 2015; 71 Jeannot, Przyjazny, Kokosa (bib9) 2010; 1217 Wang (bib46) 2018; 1537 Román (bib12) 2014; 1330 Przyjazny (bib6) 2017 Šrámková (bib13) 2018; 184 Scovazzo (bib26) 2014; 428 Trujillo-Rodríguez, Pino, Anderson (bib24) 2017; 172 De Boeck (bib20) 2018; 180 Chatzimitakos (bib33) 2016; 910 Liu (bib16) 2003; 75 Merib (bib28) 2018; 410 Lopes (bib11) 2018; 21 Pawlinsyn (bib2) 2009 Trujillo-Rodríguez (bib30) 2016; 934 Martinis, Wuilloud (bib22) 2010; 25 AOAC (bib44) 2016 Fernández, Vidal, Canals (bib32) 2018; 410 Alexovič (bib36) 2016; 906 Chatzimitakos (bib27) 2018; 1571 Guo (bib18) 2012; 35 Alexovič (bib42) 2018; 1092 An (bib17) 2017; 1500 Pastor-Belda (bib47) 2018; 1564 Dobbelin, Llarena, Claros Marfil, Cabanero J, Mecerreyes (bib25) 2011; 2 Chisvert (bib43) 2017; 983 Hutchinson, Setkova, Pawliszyn (bib40) 2007; 1149 Clark (bib23) 2016; 934 An, Rahn, Anderson (bib31) 2017; 167 Šrámková (bib39) 2016; 934 Sarafraz-Yazdi, Amiri (bib3) 2010; 29 He (bib19) 2013; 726–731 Jain, Verma (bib8) 2011; 706 Liu, Dasgupta (bib4) 1996; 68 Yu, Merib, Anderson (bib29) 2016; 1463 Alexovič (10.1016/j.aca.2019.02.013_bib36) 2016; 906 Trujillo-Rodríguez (10.1016/j.aca.2019.02.013_bib24) 2017; 172 Jain (10.1016/j.aca.2019.02.013_bib8) 2011; 706 Fernández (10.1016/j.aca.2019.02.013_bib32) 2018; 410 Chatzimitakos (10.1016/j.aca.2019.02.013_bib27) 2018; 1571 Pawlinsyn (10.1016/j.aca.2019.02.013_bib2) 2009 Guo (10.1016/j.aca.2019.02.013_bib18) 2012; 35 10.1016/j.aca.2019.02.013_bib45 Cabaleiro (10.1016/j.aca.2019.02.013_bib14) 2014; 129 Chatzimitakos (10.1016/j.aca.2019.02.013_bib33) 2016; 910 Souza-Silva (10.1016/j.aca.2019.02.013_bib1) 2015; 71 Hutchinson (10.1016/j.aca.2019.02.013_bib40) 2007; 1149 An (10.1016/j.aca.2019.02.013_bib17) 2017; 1500 Clark (10.1016/j.aca.2019.02.013_bib34) 2015; 87 Jeannot (10.1016/j.aca.2019.02.013_bib5) 1997; 69 Nacham (10.1016/j.aca.2019.02.013_bib15) 2015; 27 Pastor-Belda (10.1016/j.aca.2019.02.013_bib47) 2018; 1564 Jeannot (10.1016/j.aca.2019.02.013_bib9) 2010; 1217 Šrámková (10.1016/j.aca.2019.02.013_bib39) 2016; 934 Yu (10.1016/j.aca.2019.02.013_bib29) 2016; 1463 Šrámková (10.1016/j.aca.2019.02.013_bib38) 2014; 828 Lopes (10.1016/j.aca.2019.02.013_bib11) 2018; 21 Merib (10.1016/j.aca.2019.02.013_bib28) 2018; 410 Kocúrová (10.1016/j.aca.2019.02.013_bib37) 2013; 110 Liu (10.1016/j.aca.2019.02.013_bib4) 1996; 68 Kirschner (10.1016/j.aca.2019.02.013_bib35) 2017; 996 AOAC (10.1016/j.aca.2019.02.013_bib44) 2016 Clark (10.1016/j.aca.2019.02.013_bib23) 2016; 934 Trujillo-Rodríguez (10.1016/j.aca.2019.02.013_bib30) 2016; 934 An (10.1016/j.aca.2019.02.013_bib31) 2017; 167 Šrámková (10.1016/j.aca.2019.02.013_bib13) 2018; 184 Martinis (10.1016/j.aca.2019.02.013_bib22) 2010; 25 Sarafraz-Yazdi (10.1016/j.aca.2019.02.013_bib3) 2010; 29 Alexovič (10.1016/j.aca.2019.02.013_bib42) 2018; 1092 Eibak (10.1016/j.aca.2019.02.013_bib41) 2014; 828 Amjadi (10.1016/j.aca.2019.02.013_bib21) 2010; 93 Przyjazny (10.1016/j.aca.2019.02.013_bib6) 2017 Román (10.1016/j.aca.2019.02.013_bib12) 2014; 1330 Liu (10.1016/j.aca.2019.02.013_bib16) 2003; 75 Wang (10.1016/j.aca.2019.02.013_bib46) 2018; 1537 He (10.1016/j.aca.2019.02.013_bib19) 2013; 726–731 Fang (10.1016/j.aca.2019.02.013_bib10) 2011; 42 Dobbelin (10.1016/j.aca.2019.02.013_bib25) 2011; 2 Yamini (10.1016/j.aca.2019.02.013_bib7) 2018; 112 Scovazzo (10.1016/j.aca.2019.02.013_bib26) 2014; 428 Chisvert (10.1016/j.aca.2019.02.013_bib43) 2017; 983 De Boeck (10.1016/j.aca.2019.02.013_bib20) 2018; 180 |
References_xml | – volume: 828 start-page: 46 year: 2014 end-page: 52 ident: bib41 article-title: Parallel electromembrane extraction in the 96-well format publication-title: Anal. Chim. Acta – year: 2016 ident: bib44 article-title: Official Methods of Analysis - Guidelines for Standard Method Performance Requirements – volume: 983 start-page: 130 year: 2017 end-page: 140 ident: bib43 article-title: Introducing a new and rapid microextraction approach based on magnetic ionic liquids: stir bar dispersive liquid microextraction publication-title: Anal. Chim. Acta – volume: 69 start-page: 235 year: 1997 end-page: 239 ident: bib5 article-title: Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle publication-title: Anal. Chem. – volume: 35 start-page: 452 year: 2012 end-page: 458 ident: bib18 article-title: Ionic liquid-based single-drop liquid-phase microextraction combined with high-performance liquid chromatography for the determination of sulfonamides in environmental water publication-title: J. Separ. Sci. – volume: 167 start-page: 268 year: 2017 end-page: 278 ident: bib31 article-title: Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents publication-title: Talanta – volume: 184 start-page: 162 year: 2018 end-page: 172 ident: bib13 article-title: Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated Lab-In-Syringe technique publication-title: Talanta – volume: 71 start-page: 249 year: 2015 end-page: 264 ident: bib1 article-title: A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications publication-title: Trac. Trends Anal. Chem. – volume: 1330 start-page: 1 year: 2014 end-page: 5 ident: bib12 article-title: Rapid determination of octanol–water partition coefficient using vortex-assisted liquid–liquid microextraction publication-title: J. Chromatogr. A – reference: SANTE/11813/2017, Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed., E. COMMISSION and D.G.F.H.A.F. SAFETY, Editors. – volume: 428 start-page: 16 year: 2014 end-page: 23 ident: bib26 article-title: Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields publication-title: J. Colloid Interface Sci. – volume: 1463 start-page: 11 year: 2016 end-page: 19 ident: bib29 article-title: Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents publication-title: J. Chromatogr. A – volume: 1537 start-page: 35 year: 2018 end-page: 42 ident: bib46 article-title: Magnetic mesoporous molecularly imprinted polymers based on surface precipitation polymerization for selective enrichment of triclosan and triclocarban publication-title: J. Chromatogr. A – volume: 21 start-page: 33 year: 2018 end-page: 40 ident: bib11 article-title: Hollow-fiber renewal liquid membrane extraction coupled with 96-well plate system as innovative high-throughput configuration for the determination of endocrine disrupting compounds by high-performance liquid chromatography-fluorescence and diode array detection publication-title: Anal. Chim. Acta – volume: 828 start-page: 53 year: 2014 end-page: 60 ident: bib38 article-title: Automated in-syringe single-drop head-space micro-extraction applied to the determination of ethanol in wine samples publication-title: Anal. Chim. Acta – volume: 27 start-page: 923 year: 2015 end-page: 931 ident: bib15 article-title: Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids publication-title: Chem. Mater. – volume: 934 start-page: 132 year: 2016 end-page: 144 ident: bib39 article-title: A novel approach to Lab-In-Syringe Head-Space Single-Drop Microextraction and on-drop sensing of ammonia publication-title: Anal. Chim. Acta – volume: 42 start-page: 316 year: 2011 end-page: 322 ident: bib10 article-title: Optimization of headspace single-drop microextraction technique for extraction of light hydrocarbons (C6–C12) and its potential applications publication-title: Org. Geochem. – volume: 934 start-page: 106 year: 2016 end-page: 113 ident: bib30 article-title: Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons publication-title: Anal. Chim. Acta – volume: 110 start-page: 599 year: 2013 end-page: 607 ident: bib37 article-title: Solvent microextraction: a review of recent efforts at automation publication-title: Microchem. J. – volume: 180 start-page: 292 year: 2018 end-page: 299 ident: bib20 article-title: Fast and easy extraction of antidepressants from whole blood using ionic liquids as extraction solvent publication-title: Talanta – volume: 29 start-page: 1 year: 2010 end-page: 14 ident: bib3 article-title: Liquid-phase microextraction publication-title: Trac. Trends Anal. Chem. – volume: 726–731 start-page: 74 year: 2013 end-page: 80 ident: bib19 article-title: Determination of trace PCB in water by GC-MS with ionic liquid based headspace single-drop microextraction under ultrasound publication-title: Adv. Mater. Res. – volume: 1217 start-page: 2326 year: 2010 end-page: 2336 ident: bib9 article-title: Single drop microextraction—development, applications and future trends publication-title: J. Chromatogr. A – volume: 25 start-page: 1432 year: 2010 end-page: 1439 ident: bib22 article-title: Cold vapor ionic liquid-assisted headspace single-drop microextraction: a novel preconcentration technique for mercury species determination in complex matrix samples publication-title: J. Anal. At. Spectrom. – volume: 934 start-page: 9 year: 2016 end-page: 21 ident: bib23 article-title: Magnetic ionic liquids in analytical chemistry: a review publication-title: Anal. Chim. Acta – volume: 906 start-page: 22 year: 2016 end-page: 40 ident: bib36 article-title: Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: approaches based on extractant drop-, plug-, film- and microflow-formation publication-title: Anal. Chim. Acta – volume: 996 start-page: 29 year: 2017 end-page: 37 ident: bib35 article-title: Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system publication-title: Anal. Chim. Acta – volume: 410 start-page: 4679 year: 2018 end-page: 4687 ident: bib32 article-title: Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry publication-title: Anal. Bioanal. Chem. – volume: 1571 start-page: 47 year: 2018 end-page: 54 ident: bib27 article-title: Enhanced magnetic ionic liquid-based dispersive liquid-liquid microextraction of triazines and sulfonamides through a one-pot, pH-modulated approach publication-title: J. Chromatogr. A – volume: 87 start-page: 1552 year: 2015 end-page: 1559 ident: bib34 article-title: Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis publication-title: Anal. Chem. – volume: 129 start-page: 113 year: 2014 end-page: 118 ident: bib14 article-title: Coumarins as turn on/off fluorescent probes for detection of residual acetone in cosmetics following headspace single-drop microextraction publication-title: Talanta – volume: 2 start-page: 1275 year: 2011 end-page: 1278 ident: bib25 article-title: Synthesis of paramagnetic polymers using ionic liquid chemistry publication-title: Polym. Chem. – volume: 1564 start-page: 102 year: 2018 end-page: 109 ident: bib47 article-title: Magnetic carbon nanotube composite for the preconcentration of parabens from water and urine samples using dispersive solid phase extraction publication-title: J. Chromatogr. A – volume: 68 start-page: 1817 year: 1996 end-page: 1821 ident: bib4 article-title: Analytical chemistry in a drop. Solvent extraction in a microdrop publication-title: Anal. Chem. – volume: 1500 start-page: 1 year: 2017 end-page: 23 ident: bib17 article-title: Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems publication-title: J. Chromatogr. A – volume: 93 start-page: 985 year: 2010 end-page: 991 ident: bib21 article-title: Ionic liquid-based, single-drop microextraction for preconcentration of cobalt before its determination by electrothermal atomic absorption spectrometry publication-title: J. AOAC Int. – volume: 910 start-page: 53 year: 2016 end-page: 59 ident: bib33 article-title: Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals publication-title: Anal. Chim. Acta – volume: 172 start-page: 86 year: 2017 end-page: 94 ident: bib24 article-title: Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction publication-title: Talanta – volume: 706 start-page: 37 year: 2011 end-page: 65 ident: bib8 article-title: Recent advances in applications of single-drop microextraction: a review publication-title: Anal. Chim. Acta – volume: 75 start-page: 5870 year: 2003 end-page: 5876 ident: bib16 article-title: Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons publication-title: Anal. Chem. – volume: 1092 start-page: 402 year: 2018 end-page: 421 ident: bib42 article-title: Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals publication-title: J. Chromatogr. B – year: 2017 ident: bib6 article-title: Liquid-phase microextraction publication-title: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering – volume: 112 start-page: 264 year: 2018 end-page: 272 ident: bib7 article-title: Liquid-phase microextraction – the different principles and configurations publication-title: Trac. Trends Anal. Chem. – year: 2009 ident: bib2 article-title: Handbook of Solid Phase Microextraction – volume: 1149 start-page: 127 year: 2007 end-page: 137 ident: bib40 article-title: Automation of solid-phase microextraction on a 96-well plate format publication-title: J. Chromatogr. A – volume: 410 start-page: 4689 year: 2018 end-page: 4699 ident: bib28 article-title: Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection publication-title: Anal. Bioanal. Chem. – volume: 35 start-page: 452 issue: 3 year: 2012 ident: 10.1016/j.aca.2019.02.013_bib18 article-title: Ionic liquid-based single-drop liquid-phase microextraction combined with high-performance liquid chromatography for the determination of sulfonamides in environmental water publication-title: J. Separ. Sci. doi: 10.1002/jssc.201100777 – volume: 934 start-page: 132 year: 2016 ident: 10.1016/j.aca.2019.02.013_bib39 article-title: A novel approach to Lab-In-Syringe Head-Space Single-Drop Microextraction and on-drop sensing of ammonia publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.06.039 – volume: 910 start-page: 53 year: 2016 ident: 10.1016/j.aca.2019.02.013_bib33 article-title: Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.01.015 – volume: 1092 start-page: 402 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib42 article-title: Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2018.06.037 – volume: 934 start-page: 106 year: 2016 ident: 10.1016/j.aca.2019.02.013_bib30 article-title: Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.06.014 – volume: 410 start-page: 4689 issue: 19 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib28 article-title: Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-017-0823-7 – volume: 69 start-page: 235 issue: 2 year: 1997 ident: 10.1016/j.aca.2019.02.013_bib5 article-title: Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle publication-title: Anal. Chem. doi: 10.1021/ac960814r – volume: 996 start-page: 29 year: 2017 ident: 10.1016/j.aca.2019.02.013_bib35 article-title: Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.09.047 – volume: 726–731 start-page: 74 year: 2013 ident: 10.1016/j.aca.2019.02.013_bib19 article-title: Determination of trace PCB in water by GC-MS with ionic liquid based headspace single-drop microextraction under ultrasound publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.726-731.74 – volume: 25 start-page: 1432 issue: 9 year: 2010 ident: 10.1016/j.aca.2019.02.013_bib22 article-title: Cold vapor ionic liquid-assisted headspace single-drop microextraction: a novel preconcentration technique for mercury species determination in complex matrix samples publication-title: J. Anal. At. Spectrom. doi: 10.1039/c004678g – volume: 93 start-page: 985 issue: 3 year: 2010 ident: 10.1016/j.aca.2019.02.013_bib21 article-title: Ionic liquid-based, single-drop microextraction for preconcentration of cobalt before its determination by electrothermal atomic absorption spectrometry publication-title: J. AOAC Int. – year: 2009 ident: 10.1016/j.aca.2019.02.013_bib2 – volume: 1564 start-page: 102 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib47 article-title: Magnetic carbon nanotube composite for the preconcentration of parabens from water and urine samples using dispersive solid phase extraction publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2018.06.025 – volume: 129 start-page: 113 year: 2014 ident: 10.1016/j.aca.2019.02.013_bib14 article-title: Coumarins as turn on/off fluorescent probes for detection of residual acetone in cosmetics following headspace single-drop microextraction publication-title: Talanta doi: 10.1016/j.talanta.2014.05.033 – volume: 1500 start-page: 1 year: 2017 ident: 10.1016/j.aca.2019.02.013_bib17 article-title: Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2017.04.012 – volume: 2 start-page: 1275 year: 2011 ident: 10.1016/j.aca.2019.02.013_bib25 article-title: Synthesis of paramagnetic polymers using ionic liquid chemistry publication-title: Polym. Chem. doi: 10.1039/c1py00044f – volume: 68 start-page: 1817 issue: 11 year: 1996 ident: 10.1016/j.aca.2019.02.013_bib4 article-title: Analytical chemistry in a drop. Solvent extraction in a microdrop publication-title: Anal. Chem. doi: 10.1021/ac960145h – volume: 167 start-page: 268 year: 2017 ident: 10.1016/j.aca.2019.02.013_bib31 article-title: Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents publication-title: Talanta doi: 10.1016/j.talanta.2017.01.079 – volume: 87 start-page: 1552 issue: 3 year: 2015 ident: 10.1016/j.aca.2019.02.013_bib34 article-title: Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis publication-title: Anal. Chem. doi: 10.1021/ac504260t – ident: 10.1016/j.aca.2019.02.013_bib45 – volume: 828 start-page: 46 year: 2014 ident: 10.1016/j.aca.2019.02.013_bib41 article-title: Parallel electromembrane extraction in the 96-well format publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2014.04.038 – year: 2016 ident: 10.1016/j.aca.2019.02.013_bib44 – volume: 172 start-page: 86 year: 2017 ident: 10.1016/j.aca.2019.02.013_bib24 article-title: Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction publication-title: Talanta doi: 10.1016/j.talanta.2017.05.021 – volume: 1149 start-page: 127 issue: 2 year: 2007 ident: 10.1016/j.aca.2019.02.013_bib40 article-title: Automation of solid-phase microextraction on a 96-well plate format publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2007.02.117 – volume: 112 start-page: 264 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib7 article-title: Liquid-phase microextraction – the different principles and configurations publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2018.06.010 – volume: 71 start-page: 249 year: 2015 ident: 10.1016/j.aca.2019.02.013_bib1 article-title: A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2015.04.017 – volume: 1330 start-page: 1 year: 2014 ident: 10.1016/j.aca.2019.02.013_bib12 article-title: Rapid determination of octanol–water partition coefficient using vortex-assisted liquid–liquid microextraction publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.01.003 – volume: 1537 start-page: 35 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib46 article-title: Magnetic mesoporous molecularly imprinted polymers based on surface precipitation polymerization for selective enrichment of triclosan and triclocarban publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2018.01.023 – volume: 75 start-page: 5870 issue: 21 year: 2003 ident: 10.1016/j.aca.2019.02.013_bib16 article-title: Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons publication-title: Anal. Chem. doi: 10.1021/ac034506m – volume: 110 start-page: 599 year: 2013 ident: 10.1016/j.aca.2019.02.013_bib37 article-title: Solvent microextraction: a review of recent efforts at automation publication-title: Microchem. J. doi: 10.1016/j.microc.2013.07.009 – volume: 180 start-page: 292 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib20 article-title: Fast and easy extraction of antidepressants from whole blood using ionic liquids as extraction solvent publication-title: Talanta doi: 10.1016/j.talanta.2017.12.044 – volume: 1571 start-page: 47 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib27 article-title: Enhanced magnetic ionic liquid-based dispersive liquid-liquid microextraction of triazines and sulfonamides through a one-pot, pH-modulated approach publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2018.08.013 – volume: 828 start-page: 53 year: 2014 ident: 10.1016/j.aca.2019.02.013_bib38 article-title: Automated in-syringe single-drop head-space micro-extraction applied to the determination of ethanol in wine samples publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2014.04.031 – volume: 706 start-page: 37 issue: 1 year: 2011 ident: 10.1016/j.aca.2019.02.013_bib8 article-title: Recent advances in applications of single-drop microextraction: a review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.08.022 – volume: 21 start-page: 33 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib11 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.07.032 – volume: 27 start-page: 923 issue: 3 year: 2015 ident: 10.1016/j.aca.2019.02.013_bib15 article-title: Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids publication-title: Chem. Mater. doi: 10.1021/cm504202v – volume: 906 start-page: 22 year: 2016 ident: 10.1016/j.aca.2019.02.013_bib36 article-title: Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: approaches based on extractant drop-, plug-, film- and microflow-formation publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.11.038 – volume: 1217 start-page: 2326 issue: 16 year: 2010 ident: 10.1016/j.aca.2019.02.013_bib9 article-title: Single drop microextraction—development, applications and future trends publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2009.10.089 – volume: 1463 start-page: 11 year: 2016 ident: 10.1016/j.aca.2019.02.013_bib29 article-title: Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.08.007 – volume: 428 start-page: 16 year: 2014 ident: 10.1016/j.aca.2019.02.013_bib26 article-title: Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.04.023 – volume: 42 start-page: 316 issue: 4 year: 2011 ident: 10.1016/j.aca.2019.02.013_bib10 article-title: Optimization of headspace single-drop microextraction technique for extraction of light hydrocarbons (C6–C12) and its potential applications publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2011.01.009 – volume: 184 start-page: 162 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib13 article-title: Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated Lab-In-Syringe technique publication-title: Talanta doi: 10.1016/j.talanta.2018.02.101 – volume: 934 start-page: 9 year: 2016 ident: 10.1016/j.aca.2019.02.013_bib23 article-title: Magnetic ionic liquids in analytical chemistry: a review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.06.011 – volume: 983 start-page: 130 year: 2017 ident: 10.1016/j.aca.2019.02.013_bib43 article-title: Introducing a new and rapid microextraction approach based on magnetic ionic liquids: stir bar dispersive liquid microextraction publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.06.024 – volume: 29 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.aca.2019.02.013_bib3 article-title: Liquid-phase microextraction publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2009.10.003 – volume: 410 start-page: 4679 issue: 19 year: 2018 ident: 10.1016/j.aca.2019.02.013_bib32 article-title: Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-017-0755-2 – year: 2017 ident: 10.1016/j.aca.2019.02.013_bib6 article-title: Liquid-phase microextraction |
SSID | ssj0002104 |
Score | 2.5330102 |
Snippet | In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42−] magnetic ionic liquid (MIL) as... In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P ] [MnCl ] magnetic ionic liquid (MIL) as... In this study, an innovative and high-throughput parallel-single-drop microextraction (Pa-SDME) using the [P6,6,6,14+]2[MnCl42-] magnetic ionic liquid (MIL) as... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | 96-well plate Acetonitrile Benzophenone Bisphenol A Dilution Endocrine disrupters compounds High-throughput Ionic liquids Ions Magnetic ionic liquids Mathematical analysis Parallel single drop microextraction Propyl paraben Sample preparation Triclocarban |
Title | Single drop microextraction in a 96-well plate format: A step toward automated and high-throughput analysis |
URI | https://dx.doi.org/10.1016/j.aca.2019.02.013 https://www.ncbi.nlm.nih.gov/pubmed/30967180 https://www.proquest.com/docview/2235023943 https://www.proquest.com/docview/2207161916 |
Volume | 1063 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWBBvCkvGYkJKZDUcZKyVRWogGABJDbL8UMqlDQq6cpv5y5xKjHAwJb4IVl39t139j0AzkIXceO0DVLUJkEsMh0opdPApVzg4cMDVVdReHhMRi_x3at4XYJhGwtDbpVe9jcyvZbWvuXSU_OyHI8pxjdE7EHpxHldWW4ZVnq8n4gOrAxu70ePC4GMVk3cFs6jCe3jZu3mpTRlH4r6debOiP-mnn6Dn7UautmAdY8f2aBZ4iYs2WILVodt2bZteH9CZTSxzMymJfsgdzsUv7MmfIGNC6ZYPwnoxo6VE8SZrAGtV2zAkN8lq2o3Wqbm1RSbLX4VhlFO48BX9CnnFbY1mUx24OXm-nk4CnxFhUCjZq6QDSaLklCRkSJioyIySq3jaDSoNOrneKAdT5xwqdC5QTiUUtwtWs9WpCoNLd-FTjEt7D6wzOicE0m5CmNn0GrjmREOOYLqL8t1F8KWkFL7dONU9WIiW7-yN4m0l0R7GfYk0r4L54spZZNr46_Bccsd-WPDSNQFf007ajkp_Wn9lAiRRF0jHrtPF93IN3o8UYWdzmkMgjG0NqOkC3vNDlgskqMdiDo-PPjfmg5hjf6aG-Mj6FSzuT1GqFPlJ7B88RWd-A39DVc2-ls |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BPcCloqVACm0XqadKBpv1eh1uKCpKeV0apNxW631IgeBYqXPtb2dmbQdxSA7crH1Iq5mdmW-88wD4GfuEW29cJNGaRKnITaS1kZGXXKDwoUCFLgp399nwIb0ei_EGDLpcGAqrbHV_o9ODtm5HzlpqnlWTCeX4xog9qJw4D53lNuFDKrikuL7T_69xHujTpF3bPFrePW2GIC9tqPZQ0g91OxO-yjitAp_BCF3twscWPbLL5oCfYMOVn2F70DVt24Onv2iKpo7Z-axizxRsh8p33iQvsEnJNOtnEf2vY9UUUSZrIOsFu2TI7YrVIYiW6UU9w2GHX6VlVNE4avv5VIsax5o6Jl_g4er3aDCM2n4KkUG7XCMTbJ5ksSYXRaRWJ-SSOo8ky7VM-gWKs-eZF14KU1gEQ5KybtF3dkJqGTu-D1vlrHSHwHJrCk4k5TpOvUWfjedWeOQHGr-8MD2IO0Iq0xYbp54XU9VFlT0qpL0i2qv4XCHte_BruaVqKm2sW5x23FFvrotCS7Bu23HHSdXK6j-FAEmEDvE4fbKcRr7R04ku3WxBaxCKoa-ZZD04aG7A8pAcvUC08PHX953pB2wPR3e36vbP_c0R7NBM8-_4GLbq-cJ9Q9BTF9_DpX4Bb8D7Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+drop+microextraction+in+a+96-well+plate+format%3A+A+step+toward+automated+and+high-throughput+analysis&rft.jtitle=Analytica+chimica+acta&rft.au=Mafra%2C+Gabriela&rft.au=Vieira%2C+Augusto+A&rft.au=Merib%2C+Josias&rft.au=Anderson%2C+Jared+L&rft.date=2019-07-31&rft.issn=1873-4324&rft.eissn=1873-4324&rft.volume=1063&rft.spage=159&rft_id=info:doi/10.1016%2Fj.aca.2019.02.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon |