A fixed point theorem in strictly convex $ b $-fuzzy metric spaces
The main motivation for this paper is to investigate the fixed point property for non-expansive mappings defined on $ b $-fuzzy metric spaces. First, following the idea of S. Ješić's result from 2009, we introduce convex, strictly convex and normal structures for sets in $ b $-fuzzy metric spac...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 9; pp. 20989 - 21000 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The main motivation for this paper is to investigate the fixed point property for non-expansive mappings defined on $ b $-fuzzy metric spaces. First, following the idea of S. Ješić's result from 2009, we introduce convex, strictly convex and normal structures for sets in $ b $-fuzzy metric spaces. By using topological methods and these notions, we prove the existence of fixed points for self-mappings defined on $ b $-fuzzy metric spaces satisfying a nonlinear type condition. This result generalizes and improves many previously known results, such as W. Takahashi's result on metric spaces from 1970. A representative example illustrating the main result is provided. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20231068 |