On Clutter Rank Observed by Arbitrary Arrays

This paper analyzes the rank and eigenspectrum of the clutter covariance matrix observed by space-time radar systems with arbitrarily configured arrays and varying look geometry. Motivated by recent applications that suggest use of nonuniform antenna arrays, a generalized theory of clutter rank is d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 55; no. 1; pp. 178 - 186
Main Authors Goodman, N.A., Stiles, J.M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper analyzes the rank and eigenspectrum of the clutter covariance matrix observed by space-time radar systems with arbitrarily configured arrays and varying look geometry. Motivated by recent applications that suggest use of nonuniform antenna arrays, a generalized theory of clutter rank is derived and demonstrated. First, a one-dimensional effective random process is defined by projecting the measurements obtained by an arbitrary space-time radar system into an equivalent one-dimensional sampling structure. Then, this projection and the Karhunen-Loeve representation of random processes are used to predict clutter rank based on effective aperture-bandwidth product. Simulated results are used to confirm the theory over a wide range of scenarios, and along the way, the well-known Brennan's rule for clutter rank is shown to be a special case of the proposed aperture-bandwidth product
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2006.882071