MicroRNA-320c inhibits development of osteoarthritis through downregulation of canonical Wnt signaling pathway
Osteoarthritis (OA) is a leading cause of deformity in aging people. Emerging evidence suggests that microRNAs and Wnt signaling pathway are associated with its pathogenesis. We aimed to determine whether microRNA-320c inhibits the development of osteoarthritis by suppressing Wnt signaling pathway....
Saved in:
Published in | Life sciences (1973) Vol. 228; pp. 242 - 250 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.07.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Osteoarthritis (OA) is a leading cause of deformity in aging people. Emerging evidence suggests that microRNAs and Wnt signaling pathway are associated with its pathogenesis. We aimed to determine whether microRNA-320c inhibits the development of osteoarthritis by suppressing Wnt signaling pathway.
MiR-320c and β-catenin expression was assessed in human adipose derived stem cells (hADSCs) model of chondrogenesis and in normal and OA primary human chondrocytes. OA chondrocytes were transfected with miR-320c or its antisense inhibitor and β-catenin siRNA respectively. Direct interaction between miR-320c and β-catenin mRNA as well as activity of β-catenin/TCF complex were confirmed by luciferase reporter assay. Mmu-miR-320-3p agomir was intra-articularly injected in collagenase-induced OA mouse model. OA progression was evaluated histologically and immunohistochemically.
MiR-320c was decreased and β-catenin was increased in OA chondrocytes and late stage of hADSCs chondrogenesis. Overexpression of miR-320c and knockdown of β-catenin had similar effects that the cartilage-specific genes were elevated and hypertrophy-related genes were down-regulated in OA chondrocytes. Luciferase reporter assay confirm that miR-320c regulated the expression of β-catenin by directly targeting 3′UTR of β-catenin mRNA and decreased the relative transcriptional activity of the β-catenin/TCF complex. Injection of mmu-miR-320-3p attenuated OA progression in the OA mouse model.
Our results supports that miR-320c can inhibits the degeneration of osteoarthritis chondrocytes via suppressing the canonical Wnt signaling pathway and indicates the potential of miR-320c as a novel therapeutic agent for osteoarthritis treatment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2019.05.011 |