Exposure to dibutyl phthalate adsorbed to multi-walled carbon nanotubes causes neurotoxicity in mice by inducing the release of BDNF

Multi-walled carbon nanotubes (MWCNTs) and dibutyl phthalate (DBP) exist extensively in the environment, and they are easy to form compound pollution through π-π interactions in the environment. We investigate whether DBP, an environmental hormone disruptor, mediated by CNTs can more easily cross th...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 852; p. 158319
Main Authors Zhou, Tingting, He, Suli, Ye, Xin, Wei, Zhaolan, Wan, Jian, Zhang, Hongmao, Ding, Shumao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-walled carbon nanotubes (MWCNTs) and dibutyl phthalate (DBP) exist extensively in the environment, and they are easy to form compound pollution through π-π interactions in the environment. We investigate whether DBP, an environmental hormone disruptor, mediated by CNTs can more easily cross the blood-brain barrier, and whether DBP entering the brain has neurotoxic effects on the cells in the brain. Experimental subjects were 40 male Kunming (KM) mice randomly divided into 4 groups: the control group; the MWCNTs group; the DBP group; and the MWCNTs+DBP group. The mice were exposed via tail intravenous injection once every 3 days for 21 days, following which toxicology studies were carried out. The results of behavioral experiments showed that the mice in the combined exposure group (MWCNTs+DBP) exhibited spatial learning and memory impairment, and anxiety-like behavior. Staining of hippocampal sections of mouse brain tissue showed that, in the CA1, CA2, and DG areas, the number of neurons decreased, the nucleus was pyknotic, the cell body was atrophied, and levels of the microglia marker Iba-1 increased. By proteomic KEGG analysis, we found that the DEPs were mainly those related to neurodegenerative diseases. Immunohistochemistry in the hippocampus indicated that the level of brain-derived neurotrophic factor (BDNF) in the DG region was significantly increased. RT-PCR results revealed that the expression levels of P53, caspase3, and Bax genes related to apoptosis were up-regulated. The experimental results demonstrated that the mechanism of the combined-exposure injury to neurons in the hippocampus of mice may be that MWCNTs with adsorbed DBP can induce the release of BDNF, accelerate the apoptosis of neurons, and reduce the number of nerve cells, which activates microglia, causing neuroinflammation and nervous system toxicity. [Display omitted] •Adsorption of DBP on MWCNTs led to spatial learning and memory impairment.•Neurons in the combined exposure group showed pyknosis and decreased cell numbers.•Compound exposure led to hippocampal neuroinflammation and apoptosis.•Adsorption of DBP on MWCNTs induced the release of BDNF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2022.158319