Effects of fibrin-binding oligopeptide on osteopromotion in rabbit calvarial defects

Fibronectin (FN) has been shown to stimulate bone regeneration in animal models. The aim of this study was to evaluate the capacity of bovine bone mineral coated with synthetic oligopeptides to enhance bone regeneration in rabbit calvarial defects. Oligopeptides including fibrin-binding sequences of...

Full description

Saved in:
Bibliographic Details
Published inJournal of periodontal & implant science Vol. 40; no. 5; pp. 211 - 219
Main Authors Lee, Ju-A, Ku, Young, Rhyu, In-Chul, Chung, Chong-Pyoung, Park, Yoon-Jeong
Format Journal Article
LanguageEnglish
Published Korea (South) Korean Academy of Periodontology 01.10.2010
대한치주과학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fibronectin (FN) has been shown to stimulate bone regeneration in animal models. The aim of this study was to evaluate the capacity of bovine bone mineral coated with synthetic oligopeptides to enhance bone regeneration in rabbit calvarial defects. Oligopeptides including fibrin-binding sequences of FN repeats were synthesized on the basis of primary and tertiary human plasma FN structures. Peptide coated and uncoated bone minerals were implanted into 10 mm calvarial defects in New Zealand white rabbits, and the animals were sacrificed at 4 or 8 weeks after surgery. After specimens were prepared, histologic examination and histomorphometric analysis were performed. At 4 weeks after surgery, the uncoated groups showed a limited amount of osteoid formation at the periphery of the defect and the oligopeptide coated groups showed more osteoid formation and new bone formation in the center of the defect as well as at the periphery. At 8 weeks, both sites showed increased new bone formation. However, the difference between the two sites had reduced. Fibrin-binding synthetic oligopeptide derived from FN on deproteinized bovine bone enhanced new bone formation in rabbit calvarial defects at the early healing stage. This result suggests that these oligopeptides can be beneficial in reconstructing oral and maxillofacial deformities or in regenerating osseous bone defects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
G704-SER000001712.2010.40.5.001
ISSN:2093-2278
2093-2286
DOI:10.5051/jpis.2010.40.5.211