Sequential lateral solidification processing for polycrystalline Si TFTs

The sequential lateral solidification (SLS) process is an excimer-laser projection-based scheme for crystallization of thin films on amorphous substrates. This method can be used to readily produce a wide range of microstructures through manipulation of grain boundary placement within the crystalliz...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 51; no. 4; pp. 560 - 568
Main Authors Crowder, M.A., Voutsas, A.T., Droes, S.R., Moriguchi, M., Mitani, Y.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The sequential lateral solidification (SLS) process is an excimer-laser projection-based scheme for crystallization of thin films on amorphous substrates. This method can be used to readily produce a wide range of microstructures through manipulation of grain boundary placement within the crystallized material. In this paper, we focus on the 2-shot SLS process for crystallization of thin Si films for thin-film transistor (TFT) applications. We have investigated the effect of process parameter variation on the resulting microstructure, as well as on the performance of TFTs fabricated on the material. The 2-shot SLS microstructure was further engineered to reduce anisotropy of the TFT performance relative to the lateral growth direction using additional laser scans. Through this method, we were able to improve the mobility directionality ratio between devices with majority carrier flow parallel and perpendicular to the lateral growth direction, respectively, from 0.3 to over 0.7. Post-SLS process thinning and planarization of the Si surface was used to improve the uniformity and performance of the TFT devices.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2004.823795