Predicting Student Performance Using Personalized Analytics
To help solve the ongoing problem of student retention, new expected performance-prediction techniques are needed to facilitate degree planning and determine who might be at risk of failing or dropping a class. Personalized multiregression and matrix factorization approaches based on recommender sys...
Saved in:
Published in | Computer (Long Beach, Calif.) Vol. 49; no. 4; pp. 61 - 69 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To help solve the ongoing problem of student retention, new expected performance-prediction techniques are needed to facilitate degree planning and determine who might be at risk of failing or dropping a class. Personalized multiregression and matrix factorization approaches based on recommender systems, initially developed for e-commerce applications, accurately forecast students' grades in future courses as well as on in-class assessments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9162 1558-0814 |
DOI: | 10.1109/MC.2016.119 |