Guaiacol hydrodeoxygenation in hydrothermal conditions using N-doped reduced graphene oxide (RGO) supported Pt and Ni catalysts: Seeking for economically viable biomass upgrading alternatives

[Display omitted] •Novel in-situ HDO strategy with H2O as hydrogen source.•N-doped reduced graphene oxide (RGO) advanced supports.•Comparison among Pt-based and Ni N-doped RGO supported catalysts for ‘H2-free’ HDO of guaiacol.•Innovate route for economically viable biomass upgrading. Herein we prese...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. A, General Vol. 611; p. 117977
Main Authors Parrilla-Lahoz, S., Jin, W., Pastor-Pérez, L., Carrales-Alvarado, D., Odriozola, J.A., Dongil, A.B., Reina, T.R.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.02.2021
Elsevier Science SA
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] •Novel in-situ HDO strategy with H2O as hydrogen source.•N-doped reduced graphene oxide (RGO) advanced supports.•Comparison among Pt-based and Ni N-doped RGO supported catalysts for ‘H2-free’ HDO of guaiacol.•Innovate route for economically viable biomass upgrading. Herein we present an innovative route for model biomass compounds upgrading via “H2-free” hydrodeoxygenation (HDO) reactions. The underlaying idea is to implement a multifunctional catalyst able to activate water and subsequently use in-situ generated hydrogen for the HDO process. In this sense we have developed a series of effective Ni and Pt based catalysts supported on N-promoted graphene decorated with ceria. The catalyst reached commendable conversion levels and selectivity to mono-oxygenated compounds considering the very challenging reaction conditions. Pt outperforms Ni when the samples are tested as-prepared. However, Ni performance is remarkably boosted upon applying a pre-conditioning reductive treatment. Indeed, our NiCeO2/GOr-N present the best activity/selectivity balance and it is deemed as a promising catalyst to conduct the H2-free HDO reaction. Overall, this “proof-concept” showcases an economically appealing route for bio-compounds upgrading evidencing the key role of advanced catalysts for a low carbon future.
ISSN:0926-860X
1873-3875
DOI:10.1016/j.apcata.2020.117977