Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis
Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A...
Saved in:
Published in | Cell research Vol. 27; no. 10; pp. 1216 - 1230 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type At spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactiva- tion of the m6A RNA methyltransferase Mettl3 or Mettll4 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Com- bined deletion of Mettl3 and Mettll4 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettll4 in advanced germ cells show normal spermatogenesis. The sper- matids from d6uble-mutant mice exhibit impaired translation of haploid-specific genes that are esseritial for spermio- genesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis. |
---|---|
AbstractList | Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that
N
6
-methyladenosine (m
6
A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m
6
A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A
1
spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the m
6
A RNA methyltransferase
Mettl3
or
Mettl14
with
V
asa
-Cre
causes loss of m
6
A and depletion of SSCs. m
6
A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of
Mettl3
and
Mettl14
in advanced germ cells with
Stra8-GFPCre
disrupts spermiogenesis, whereas mice with single deletion of either
Mettl3
or
Mettl14
in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA m
6
A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis. Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type At spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactiva- tion of the m6A RNA methyltransferase Mettl3 or Mettll4 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Com- bined deletion of Mettl3 and Mettll4 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettll4 in advanced germ cells show normal spermatogenesis. The sper- matids from d6uble-mutant mice exhibit impaired translation of haploid-specific genes that are esseritial for spermio- genesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis. Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A1 spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the m6A RNA methyltransferase Mettl3 or Mettl14 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of Mettl3 and Mettl14 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettl14 in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis.Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A1 spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the m6A RNA methyltransferase Mettl3 or Mettl14 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of Mettl3 and Mettl14 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettl14 in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis. Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6 -methyladenosine (m6 A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6 A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A1 spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the m6 A RNA methyltransferase Mettl3 or Mettl14 with Vasa-Cre causes loss of m6 A and depletion of SSCs. m6 A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of Mettl3 and Mettl14 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettl14 in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA m6 A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis. |
Author | Zhen Lin;Phillip J Hsu;Xudong Xing;Jianhuo Fang;Zhike Lu;Qin Zou;Ke-Jia Zhang;Xiao Zhang;Yuchuan Zhou;Teng Zhang;Youcheng Zhang;Wanlu Song;Guifang Jia;Xuerui Yang;Chuan He;Ming-Han Tong |
AuthorAffiliation | State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China;Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chica- go, IL 60637, USA;MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;Synthetic and Functional Biomolecules Center, Beo'ing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Min- istry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China |
Author_xml | – sequence: 1 givenname: Zhen surname: Lin fullname: Lin, Zhen organization: State Key Laboratory of Molecular Biology Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Phillip J surname: Hsu fullname: Hsu, Phillip J organization: Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago – sequence: 3 givenname: Xudong surname: Xing fullname: Xing, Xudong organization: MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University – sequence: 4 givenname: Jianhuo surname: Fang fullname: Fang, Jianhuo organization: MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University – sequence: 5 givenname: Zhike surname: Lu fullname: Lu, Zhike organization: Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago – sequence: 6 givenname: Qin surname: Zou fullname: Zou, Qin organization: MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University – sequence: 7 givenname: Ke-Jia surname: Zhang fullname: Zhang, Ke-Jia organization: State Key Laboratory of Molecular Biology Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 8 givenname: Xiao surname: Zhang fullname: Zhang, Xiao organization: Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University – sequence: 9 givenname: Yuchuan surname: Zhou fullname: Zhou, Yuchuan organization: State Key Laboratory of Molecular Biology Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 10 givenname: Teng surname: Zhang fullname: Zhang, Teng organization: State Key Laboratory of Molecular Biology Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 11 givenname: Youcheng surname: Zhang fullname: Zhang, Youcheng organization: State Key Laboratory of Molecular Biology Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 12 givenname: Wanlu surname: Song fullname: Song, Wanlu organization: MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University – sequence: 13 givenname: Guifang surname: Jia fullname: Jia, Guifang organization: Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University – sequence: 14 givenname: Xuerui surname: Yang fullname: Yang, Xuerui email: yangxuerui@tsinghua.edu.cn organization: MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University – sequence: 15 givenname: Chuan surname: He fullname: He, Chuan email: chuanhe@uchicago.edu organization: Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University – sequence: 16 givenname: Ming-Han surname: Tong fullname: Tong, Ming-Han email: minghan@sibcb.ac.cn organization: State Key Laboratory of Molecular Biology Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences |
BookMark | eNptkVtrFDEUx4NU7EWf_AKLvgg625NkcpmXQin1ArWi6HPIzpzZTZlJtklG6LdvpruKlj6dcPL7_8_tmBz44JGQ1xSWFLg-beOSAVVLStUzckRVrSuluT4obwBagQR2SI5TugFgohb0BTlkuqE1E_KIfP-KOQ-8On2ItK5G7JzN2C3GH9fni2tZEnlzN9gOfUjO42IM3TQUIi3GKc6JtMU42hzW6DG59JI87-2Q8NU-npBfHy9_Xnyurr59-nJxflW1XEOuWq2Ykn3XC0BWMk1pn1m66hq2UrJDUSPTqoemBVbLRiDl3YpJ3tkGGaqen5Czne92WpWmW_Q52sFsoxttvDPBOvP_j3cbsw6_jZAcpKbF4N3eIIbbCVM2o0stDoP1GKZkaFMDiAY4FPTtI_QmTNGX8WaqbLypHwzpjmpjSClib1qXbXZhru8GQ8HMBzNtNPPBTJm4aN4_0vwZ4Gn6w45OhfJrjP_08ST-Zm--CX59WxR_3aXiQitZFnoPnluw7A |
CitedBy_id | crossref_primary_10_3389_fgene_2022_832677 crossref_primary_10_1007_s11427_023_2526_2 crossref_primary_10_3389_fcell_2021_791221 crossref_primary_10_1186_s41021_021_00223_0 crossref_primary_10_15252_embj_2020105977 crossref_primary_10_1016_j_biopha_2020_110731 crossref_primary_10_1016_j_envpol_2023_121144 crossref_primary_10_1155_2021_5537804 crossref_primary_10_1007_s13577_022_00825_y crossref_primary_10_1093_humupd_dmae034 crossref_primary_10_1093_molehr_gaab025 crossref_primary_10_1016_j_gene_2020_144810 crossref_primary_10_1016_j_scitotenv_2022_160432 crossref_primary_10_1007_s10753_024_02098_z crossref_primary_10_1093_abbs_gmab148 crossref_primary_10_1093_molehr_gaab020 crossref_primary_10_1097_MD_0000000000025952 crossref_primary_10_3389_fcell_2022_819044 crossref_primary_10_1002_cai2_103 crossref_primary_10_1016_j_tcb_2019_02_008 crossref_primary_10_1186_s12915_023_01549_7 crossref_primary_10_3389_fncel_2022_1058083 crossref_primary_10_1002_mrd_23236 crossref_primary_10_1038_s41598_025_85150_8 crossref_primary_10_1186_s12915_024_01905_1 crossref_primary_10_3390_curroncol32030159 crossref_primary_10_1016_j_yjmcc_2019_03_010 crossref_primary_10_1002_wrna_1618 crossref_primary_10_1152_ajpcell_00575_2022 crossref_primary_10_1111_andr_13678 crossref_primary_10_1186_s13046_020_01706_8 crossref_primary_10_3389_fcell_2021_590468 crossref_primary_10_3389_fgene_2018_00732 crossref_primary_10_1038_s41467_023_37252_y crossref_primary_10_1016_j_biopha_2024_116171 crossref_primary_10_1016_j_bcp_2023_115628 crossref_primary_10_1038_s41598_019_44714_1 crossref_primary_10_3390_biology11070944 crossref_primary_10_1111_rda_13856 crossref_primary_10_1186_s13059_020_02009_z crossref_primary_10_1038_s41419_020_03143_z crossref_primary_10_1007_s12015_019_09894_3 crossref_primary_10_1093_nar_gkab714 crossref_primary_10_1016_j_ygeno_2020_09_038 crossref_primary_10_3724_abbs_2024152 crossref_primary_10_1080_15476286_2021_2024033 crossref_primary_10_1016_j_jhazmat_2025_137432 crossref_primary_10_1038_s41422_018_0040_8 crossref_primary_10_1016_j_jhazmat_2023_131891 crossref_primary_10_1186_s40104_019_0361_6 crossref_primary_10_1016_j_jhazmat_2024_136748 crossref_primary_10_1002_adbi_202300068 crossref_primary_10_1007_s43032_024_01747_w crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022045134 crossref_primary_10_1016_j_cbi_2022_110047 crossref_primary_10_1017_S0967199420000799 crossref_primary_10_1073_pnas_2401386121 crossref_primary_10_1093_gpbjnl_qzae050 crossref_primary_10_1002_advs_202403866 crossref_primary_10_1002_jat_4417 crossref_primary_10_1038_s41467_025_57702_z crossref_primary_10_1038_s41419_020_2235_4 crossref_primary_10_1093_molehr_gaac031 crossref_primary_10_1002_advs_202406332 crossref_primary_10_1038_s41419_020_2333_3 crossref_primary_10_1007_s00894_022_05407_1 crossref_primary_10_3389_fcell_2021_676364 crossref_primary_10_1016_j_jare_2022_10_016 crossref_primary_10_1186_s12864_021_07904_8 crossref_primary_10_3390_genes12030345 crossref_primary_10_1007_s00018_024_05479_7 crossref_primary_10_1038_s41419_021_04016_9 crossref_primary_10_1016_j_gene_2022_146405 crossref_primary_10_1038_s41422_020_00416_2 crossref_primary_10_1016_j_jbc_2023_104783 crossref_primary_10_1093_nar_gkad596 crossref_primary_10_1016_j_biopha_2019_108613 crossref_primary_10_3389_fcell_2020_00751 crossref_primary_10_3389_fendo_2023_1205408 crossref_primary_10_3390_biology12111448 crossref_primary_10_1186_s12943_022_01572_2 crossref_primary_10_1093_nar_gkaa203 crossref_primary_10_1074_jbc_RA118_002851 crossref_primary_10_1186_s40364_020_00203_6 crossref_primary_10_1360_SSV_2023_0172 crossref_primary_10_3390_biom12050737 crossref_primary_10_1016_j_gde_2024_102224 crossref_primary_10_1016_j_jmb_2025_169046 crossref_primary_10_1016_j_molcel_2020_01_002 crossref_primary_10_1016_j_rbmo_2024_104375 crossref_primary_10_1186_s12864_024_10343_w crossref_primary_10_1093_abbs_gmaa130 crossref_primary_10_1242_dev_202312 crossref_primary_10_1159_000520412 crossref_primary_10_18632_aging_204810 crossref_primary_10_1038_s41422_018_0062_2 crossref_primary_10_1007_s11154_022_09783_0 crossref_primary_10_1016_j_aqrep_2023_101493 crossref_primary_10_1016_j_gene_2024_149100 crossref_primary_10_1186_s11658_022_00404_x crossref_primary_10_1016_j_jhepr_2023_100766 crossref_primary_10_3389_fcell_2021_684398 crossref_primary_10_3390_biom14050514 crossref_primary_10_1007_s00018_021_03823_9 crossref_primary_10_1186_s13045_022_01231_5 crossref_primary_10_1016_j_stemcr_2020_09_001 crossref_primary_10_1038_s41467_025_57898_0 crossref_primary_10_1096_fj_201903169R crossref_primary_10_3389_fcell_2020_561703 crossref_primary_10_3390_epigenomes4010005 crossref_primary_10_1016_j_isci_2024_109456 crossref_primary_10_1002_wrna_1810 crossref_primary_10_1038_s44318_024_00203_4 crossref_primary_10_3390_cells10030666 crossref_primary_10_1371_journal_pbio_3001683 crossref_primary_10_1146_annurev_genom_083118_015143 crossref_primary_10_3724_abbs_2024201 crossref_primary_10_1016_j_ymthe_2020_06_024 crossref_primary_10_3389_fgene_2020_00412 crossref_primary_10_1096_fj_202301234RR crossref_primary_10_1016_j_semcdb_2017_10_006 crossref_primary_10_1590_1678_4685_gmb_2020_0253 crossref_primary_10_3390_life14091155 crossref_primary_10_7554_eLife_94754 crossref_primary_10_1126_scitranslmed_ado5266 crossref_primary_10_1111_acel_14338 crossref_primary_10_3389_fcell_2021_765635 crossref_primary_10_1038_cr_2018_7 crossref_primary_10_2147_DMSO_S344472 crossref_primary_10_1242_dev_183764 crossref_primary_10_1002_cbf_70039 crossref_primary_10_3389_fonc_2021_681781 crossref_primary_10_1016_j_celrep_2020_108580 crossref_primary_10_1016_j_scib_2023_04_030 crossref_primary_10_1080_10408363_2021_2002256 crossref_primary_10_1186_s12964_023_01385_w crossref_primary_10_7554_eLife_56980 crossref_primary_10_1038_s41580_019_0168_5 crossref_primary_10_1016_j_envpol_2022_120112 crossref_primary_10_1021_acs_biochem_8b01166 crossref_primary_10_1016_j_bbagrm_2023_194967 crossref_primary_10_1146_annurev_genet_120417_031522 crossref_primary_10_3389_fphar_2022_958204 crossref_primary_10_1080_10408398_2021_1927975 crossref_primary_10_7554_eLife_94754_3 crossref_primary_10_1016_j_celrep_2023_112953 crossref_primary_10_21769_BioProtoc_1010320 crossref_primary_10_1002_jcp_28014 crossref_primary_10_1016_j_theriogenology_2021_10_017 crossref_primary_10_3892_ijmm_2023_5289 crossref_primary_10_1186_s13046_023_02844_5 crossref_primary_10_1016_j_gpb_2022_04_009 crossref_primary_10_1186_s43042_024_00532_3 crossref_primary_10_1038_s41421_024_00653_4 crossref_primary_10_1038_s41422_018_0074_y crossref_primary_10_1186_s12935_020_01738_2 crossref_primary_10_1186_s12943_018_0847_4 crossref_primary_10_1093_bfgp_elz018 crossref_primary_10_3389_fcell_2021_681238 crossref_primary_10_1530_REP_22_0112 crossref_primary_10_1016_j_bbagrm_2018_10_013 crossref_primary_10_3390_plants12071449 crossref_primary_10_1016_j_bbagrm_2018_10_016 crossref_primary_10_1002_advs_202301940 crossref_primary_10_1016_j_ecoenv_2023_115072 crossref_primary_10_1016_j_gene_2023_147430 crossref_primary_10_1530_REP_18_0009 crossref_primary_10_1073_pnas_2203208119 crossref_primary_10_1016_j_pharmthera_2022_108174 crossref_primary_10_1016_j_ygeno_2025_111030 crossref_primary_10_3389_fgene_2022_1042543 crossref_primary_10_1016_j_biopha_2019_109694 crossref_primary_10_3389_fmolb_2022_871737 crossref_primary_10_1038_s44318_024_00213_2 crossref_primary_10_1093_nar_gkac304 crossref_primary_10_1186_s40364_023_00503_7 crossref_primary_10_1111_jcmm_16845 crossref_primary_10_1038_s41419_022_05435_y crossref_primary_10_1016_j_scib_2025_02_009 crossref_primary_10_1016_j_envpol_2024_124531 crossref_primary_10_1016_j_bbagrm_2019_07_003 crossref_primary_10_1038_s41590_022_01268_1 crossref_primary_10_1016_j_ygcen_2022_114186 crossref_primary_10_1155_2019_5648783 crossref_primary_10_1016_j_envpol_2023_121897 crossref_primary_10_1186_s12943_019_1084_1 crossref_primary_10_1186_s40104_022_00710_6 crossref_primary_10_1007_s11427_023_2535_x crossref_primary_10_3390_ijms25158365 crossref_primary_10_1016_j_cell_2024_03_032 crossref_primary_10_3390_ijms26020591 crossref_primary_10_1007_s12033_021_00406_8 crossref_primary_10_1038_s41419_023_06359_x crossref_primary_10_4103_aja202350 crossref_primary_10_1093_biolre_ioab142 crossref_primary_10_1371_journal_ppat_1012476 crossref_primary_10_1016_j_theriogenology_2022_04_022 crossref_primary_10_1093_nar_gkab107 crossref_primary_10_1016_j_celrep_2021_110110 crossref_primary_10_1093_nar_gkad769 crossref_primary_10_3390_ani13182815 crossref_primary_10_1002_cam4_2833 crossref_primary_10_1186_s12974_024_03248_8 crossref_primary_10_1016_j_ijbiomac_2023_126934 crossref_primary_10_1038_s12276_020_0432_y crossref_primary_10_1093_nar_gkad524 crossref_primary_10_1016_j_cbi_2021_109754 crossref_primary_10_1038_s41467_022_31364_7 crossref_primary_10_1038_s41422_018_0034_6 crossref_primary_10_17776_csj_1307100 crossref_primary_10_1038_s41420_024_02222_w crossref_primary_10_1093_dnares_dsaa019 crossref_primary_10_3389_fgene_2020_00211 crossref_primary_10_1016_j_cellsig_2024_111038 crossref_primary_10_1016_j_celrep_2023_112650 crossref_primary_10_1021_acs_jmedchem_2c01601 crossref_primary_10_1016_j_stem_2021_01_007 crossref_primary_10_1016_j_celrep_2023_112403 crossref_primary_10_1016_j_ecoenv_2023_115288 crossref_primary_10_3389_fnins_2023_1145092 crossref_primary_10_1186_s13046_024_02965_5 crossref_primary_10_1007_s12033_020_00269_5 crossref_primary_10_37496_rbz5220210149 crossref_primary_10_1016_j_semcancer_2020_11_018 crossref_primary_10_5483_BMBRep_2022_55_12_140 crossref_primary_10_1016_j_jcmgh_2021_04_001 crossref_primary_10_1080_15548627_2020_1720431 crossref_primary_10_3389_fgene_2022_1096071 crossref_primary_10_3389_fvets_2022_971515 crossref_primary_10_1371_journal_pgen_1007412 crossref_primary_10_18632_aging_204679 crossref_primary_10_3389_fcell_2021_755670 crossref_primary_10_3390_ijms23094630 crossref_primary_10_1016_j_theriogenology_2021_11_024 crossref_primary_10_1016_j_ygeno_2025_111005 crossref_primary_10_1007_s10565_021_09627_8 crossref_primary_10_1161_ATVBAHA_121_316414 crossref_primary_10_2174_0115665240306965240802075331 crossref_primary_10_3389_fcell_2022_945202 crossref_primary_10_3390_ph14030218 crossref_primary_10_1111_cpr_13164 crossref_primary_10_1038_s41598_024_66744_0 crossref_primary_10_1096_fj_201800719R crossref_primary_10_1186_s12964_024_01980_5 crossref_primary_10_1016_j_gpb_2021_08_006 crossref_primary_10_2337_db19_0906 crossref_primary_10_1007_s00018_021_04012_4 crossref_primary_10_1186_s13059_024_03332_5 crossref_primary_10_1093_jas_skab362 crossref_primary_10_7554_eLife_79994 crossref_primary_10_1093_procel_pwad009 crossref_primary_10_1016_j_virol_2023_03_007 crossref_primary_10_1016_j_ymthe_2024_12_003 crossref_primary_10_1096_fj_202101608R crossref_primary_10_1038_s41556_023_01258_x crossref_primary_10_1186_s12859_020_03670_8 crossref_primary_10_1186_s13578_021_00661_x crossref_primary_10_3390_cells12091322 crossref_primary_10_1038_s41467_024_45675_4 crossref_primary_10_1261_rna_064295_117 crossref_primary_10_3390_biom14050529 crossref_primary_10_1007_s00018_024_05119_0 crossref_primary_10_3892_ol_2018_9395 crossref_primary_10_1016_j_ymeth_2022_03_008 crossref_primary_10_1038_s42003_023_04693_6 crossref_primary_10_1126_science_abj6647 crossref_primary_10_1016_j_bbadis_2024_167290 crossref_primary_10_1083_jcb_202206067 crossref_primary_10_1007_s11010_019_03641_5 crossref_primary_10_1126_science_aau1646 crossref_primary_10_1093_jleuko_qiae106 crossref_primary_10_1080_08916934_2023_2167983 crossref_primary_10_1038_s41422_018_0082_y crossref_primary_10_1038_s41467_020_15488_2 crossref_primary_10_1016_j_tcb_2019_01_004 crossref_primary_10_2174_1568026623666230825144949 crossref_primary_10_3389_fgene_2021_735454 crossref_primary_10_1242_dev_201501 crossref_primary_10_1038_s41419_021_04272_9 crossref_primary_10_1111_cpr_13782 crossref_primary_10_1186_s12935_022_02456_7 crossref_primary_10_1093_femsle_fny286 crossref_primary_10_1093_nar_gkac594 crossref_primary_10_2139_ssrn_3940258 crossref_primary_10_1186_s13059_018_1435_z crossref_primary_10_1016_j_envpol_2025_125896 crossref_primary_10_1016_j_gendis_2020_11_002 crossref_primary_10_1038_cr_2017_143 crossref_primary_10_1038_s41467_022_35643_1 crossref_primary_10_1016_j_tig_2019_12_007 crossref_primary_10_1038_s41467_023_37596_5 crossref_primary_10_2174_0113892029296712240405053201 crossref_primary_10_1186_s12931_021_01728_6 crossref_primary_10_1111_os_14064 crossref_primary_10_3389_fendo_2022_1063929 crossref_primary_10_3390_biomedicines9121884 crossref_primary_10_3390_ijms241914475 crossref_primary_10_1186_s13072_022_00448_5 crossref_primary_10_3389_fcell_2021_724282 crossref_primary_10_1111_cpr_13410 crossref_primary_10_1186_s13045_023_01477_7 crossref_primary_10_1101_gad_340695_120 crossref_primary_10_1093_biolre_ioz012 crossref_primary_10_1093_nar_gkx1182 crossref_primary_10_3389_fgene_2019_01318 crossref_primary_10_1007_s00441_021_03550_4 crossref_primary_10_1074_jbc_RA119_011556 crossref_primary_10_3389_fphar_2021_722728 crossref_primary_10_1093_jmcb_mjac069 crossref_primary_10_3389_fcell_2020_00782 crossref_primary_10_1016_j_diff_2023_07_001 crossref_primary_10_1016_j_cellsig_2022_110335 crossref_primary_10_1016_j_jbc_2021_100973 crossref_primary_10_1007_s44337_025_00199_8 crossref_primary_10_1016_j_bbagrm_2018_12_008 crossref_primary_10_1007_s00441_022_03725_7 crossref_primary_10_1038_s41422_025_01080_0 crossref_primary_10_1038_s12276_024_01245_8 crossref_primary_10_1007_s00018_024_05480_0 crossref_primary_10_3390_genes13020340 crossref_primary_10_1093_stcltm_szac049 crossref_primary_10_1186_s13578_020_00513_0 crossref_primary_10_15252_embr_201949863 crossref_primary_10_1038_s41467_021_27539_3 crossref_primary_10_1111_jcmm_18128 crossref_primary_10_1038_s41422_020_0279_8 crossref_primary_10_3389_fcell_2021_683254 crossref_primary_10_4093_dmj_2021_0306 crossref_primary_10_3390_ani12192711 crossref_primary_10_1038_s41418_022_01057_1 crossref_primary_10_3389_fonc_2021_738406 crossref_primary_10_1038_s41392_023_01575_5 crossref_primary_10_1038_s41467_018_06898_4 |
Cites_doi | 10.1095/biolreprod.113.108597 10.1210/en.2010-1249 10.1038/nature12730 10.1073/pnas.1316316110 10.1016/j.celrep.2014.07.045 10.1371/journal.pone.0021800 10.1016/0092-8674(75)90158-0 10.1073/pnas.0707589104 10.1038/nature18298 10.1095/biolreprod.111.096313 10.1002/cyto.a.22463 10.1038/nature20577 10.1095/biolreprod.112.105346 10.1371/journal.pgen.1002732 10.1093/nar/gku1283 10.1038/nature15377 10.1016/j.cell.2017.05.045 10.1038/ng1366 10.1038/nature21671 10.1146/annurev.cellbio.24.110707.175355 10.1530/REP-12-0362 10.1095/biolreprod.109.083352 10.1016/j.cell.2015.08.011 10.1016/j.cell.2011.10.002 10.1095/biolreprod.107.064337 10.1073/pnas.0603603103 10.1016/j.cell.2013.10.026 10.1038/nchembio.687 10.1242/dev.135939 10.1152/physrev.1972.52.1.198 10.1126/science.1261417 10.1242/dev.094045 10.1038/ncomms11194 10.1038/nature21355 10.1016/j.cell.2013.10.047 10.1038/cr.2014.3 10.1152/physrev.00013.2015 10.1016/j.celrep.2017.02.059 10.1093/bioinformatics/btu638 10.1073/pnas.1111577108 10.1101/gad.240465.114 10.1038/nprot.2012.086 10.1038/ncb2902 10.1016/j.molcel.2016.03.021 10.1128/MCB.23.22.8084-8091.2003 10.1016/j.cell.2017.05.003 10.1038/srep21776 10.1016/j.cell.2015.05.014 10.1016/j.ccell.2017.02.013 10.1093/nar/gkf573 10.1016/j.cell.2012.05.003 10.1095/biolreprod.107.066795 10.1002/dvg.20310 10.1126/science.1168978 10.1507/endocrj.EJ12-0160 10.1038/nchembio.1432 10.1093/bioinformatics/btp616 10.1016/j.molcel.2012.10.015 10.1210/endo.140.12.7172 10.1038/nature20568 10.1038/ng1367 10.1128/MCB.12.3.1078 10.1634/stemcells.2007-0502 10.1095/biolreprod.114.123661 10.1186/gb-2013-14-4-r36 10.1172/JCI57984 10.1074/mcp.M116.065797 10.1038/nature11112 10.14806/ej.17.1.200 |
ContentType | Journal Article |
Copyright | Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2017 Copyright Nature Publishing Group Oct 2017 Copyright © 2017 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2017 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
Copyright_xml | – notice: Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2017 – notice: Copyright Nature Publishing Group Oct 2017 – notice: Copyright © 2017 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2017 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
DBID | 2RA 92L CQIGP W94 WU4 ~WA AAYXX CITATION 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/cr.2017.117 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis mRNA m6A modification regulates male germ cell development |
EISSN | 1748-7838 |
EndPage | 1230 |
ExternalDocumentID | PMC5630681 10_1038_cr_2017_117 673587626 |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2B. 2C. 2RA 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 5XL 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92L 92M 92Q 93N 9D9 9DA AADWK AANZL AATNV AAWBL AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABUWG ACAOD ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACIWK ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AESKC AEVLU AEXYK AFKRA AFNRJ AFRAH AFSHS AFUIB AGEZK AGGBP AGHAI AHMBA AHSBF AILAN AJCLW AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRJV AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS NXXTH NYICJ O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT RPM RT1 S.. SNX SNYQT SOHCF SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP W94 WFFXF WU4 XSB ~88 ~WA AACDK AAHBH AASML AAXDM AAYZH ABAKF ABZZP ACMJI AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU ALIPV FIGPU LGEZI LOTEE NADUK ROL SOJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c380t-c87276fdf50e238091172a1bd92b76de54e287f09c024695e13db263da9e2e7f3 |
IEDL.DBID | 7X7 |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 14:08:00 EDT 2025 Tue Aug 05 11:12:49 EDT 2025 Fri Jul 25 09:03:47 EDT 2025 Tue Jul 01 03:41:35 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Fri Feb 21 02:38:12 EST 2025 Wed Feb 14 09:56:57 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | A RNA modification spermatogonial stem cell spermiogenesis Mettl3 Mettl14 m |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-c87276fdf50e238091172a1bd92b76de54e287f09c024695e13db263da9e2e7f3 |
Notes | Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type At spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactiva- tion of the m6A RNA methyltransferase Mettl3 or Mettll4 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Com- bined deletion of Mettl3 and Mettll4 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettll4 in advanced germ cells show normal spermatogenesis. The sper- matids from d6uble-mutant mice exhibit impaired translation of haploid-specific genes that are esseritial for spermio- genesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis. 31-1568 m6A RNA modification; Mettl3; Mettll4; spermatogonial stem cell; spermiogenesis ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These two authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/cr2017117.pdf |
PMID | 28914256 |
PQID | 1947489481 |
PQPubID | 536307 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5630681 proquest_miscellaneous_1940059030 proquest_journals_1947489481 crossref_citationtrail_10_1038_cr_2017_117 crossref_primary_10_1038_cr_2017_117 springer_journals_10_1038_cr_2017_117 chongqing_primary_673587626 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Research |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Fustin, Doi, Yamaguchi (CR13) 2013; 155 Xiao, Zou, Liu, Yang (CR65) 2016; 7 Zhang, Zhao, Zhou (CR15) 2017; 31 Alarcon, Goodarzi, Lee, Liu, Tavazoie, Tavazoie (CR5) 2015; 162 Chen, Ma, Hogarth, Wei, Griswold, Tong (CR59) 2016; 143 Schwartz, Agarwala, Mumbach (CR28) 2013; 155 Goertz, Wu, Gallardo, Hamra, Castrillon (CR37) 2011; 121 Chan, Oatley, Kaucher (CR38) 2014; 28 Liu, Yue, Han (CR19) 2014; 10 Wang, Guo, Wang (CR40) 2017; 16 Anders, Pyl, Huber (CR60) 2015; 31 Zhou, Li, Nie (CR45) 2008; 78 Dominissini, Moshitch-Moshkovitz, Schwartz (CR6) 2012; 485 Supek, Bosnjak, Skunca, Smuc (CR70) 2011; 6 Martin (CR66) 2011; 17 Zhao, Wang, Beadell (CR14) 2017; 542 Bokar, Shambaugh, Polayes, Matera, Rottman (CR18) 1997; 3 Haussmann, Bodi, Sanchez-Moran (CR25) 2016; 540 Cao, Fu, Ge (CR55) 2012; 59 Wang, Lu, Gomez (CR10) 2014; 505 Shah, Clancy (CR33) 1992; 12 Gallardo, Shirley, John, Castrillon (CR29) 2007; 45 Shirakawa, Yaman-Deveci, Tomizawa (CR36) 2013; 140 Ingolia, Lareau, Weissman (CR69) 2011; 147 Tong, Mitchell, McGowan, Evanoff, Griswold (CR56) 2012; 86 Kawa, Ito, Toyama (CR53) 2006; 103 Costoya, Hobbs, Barna (CR48) 2004; 36 Hogarth, Evanoff, Mitchell (CR57) 2013; 88 Ingolia, Brar, Rouskin, McGeachy, Weissman (CR63) 2012; 7 Zhou, Wan, Gao, Zhang, Jaffrey, Qian (CR11) 2015; 526 Pendleton, Chen, Liu (CR35) 2017; 169 Oatley, Kaucher, Avarbock, Brinster (CR44) 2010; 83 Ingolia, Ghaemmaghami, Newman, Weissman (CR64) 2009; 324 Gaysinskaya, Soh, van der Heijden, Bortvin (CR58) 2014; 85 Wang, Feng, Xue (CR31) 2016; 534 Schrans-Stassen, van de Kant, de Rooij, van Pelt (CR39) 1999; 140 Wang, Li, Toth, Petroski, Zhang, Zhao (CR24) 2014; 16 Laronda, Jameson (CR42) 2011; 152 Dass, Tardif, Park (CR50) 2007; 104 Lence, Akhtar, Bayer (CR26) 2016; 540 Wei, Gershowitz, Moss (CR9) 1975; 4 Zheng, Dahl, Niu (CR22) 2013; 49 Robinson, McCarthy, Smyth (CR62) 2010; 26 Ping, Sun, Wang (CR20) 2014; 24 Oatley, Brinster (CR3) 2008; 24 Cui, Shi, Ye (CR16) 2017; 18 Kuroki, Akiyoshi, Tokura (CR51) 2013; 89 Clancy, Shambaugh, Timpte, Bokar (CR32) 2002; 30 Meyer-Ficca, Ihara, Bader, Leu, Beneke, Meyer (CR52) 2015; 92 Zhou, Nie, Li (CR46) 2008; 79 Griswold (CR1) 2016; 96 Hao, Yamamoto, Richardson (CR41) 2008; 26 Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (CR61) 2013; 14 Buaas, Kirsh, Sharma (CR47) 2004; 36 Agarwala, Blitzblau, Hochwagen, Fink (CR34) 2012; 8 Pandey, Tokuzawa, Yang (CR54) 2013; 110 Geula, Moshitch-Moshkovitz, Dominissini (CR23) 2015; 347 Xiang, Laurent, Hsu (CR12) 2017; 543 Lin, Choe, Du, Triboulet, Gregory (CR17) 2016; 62 Wang, Zhao, Guo (CR49) 2016; 6 Ingolia, Brar, Stern-Ginossar (CR68) 2014; 8 Roundtree, Evans, Pan, He (CR30) 2017; 169 Jia, Fu, Zhao (CR21) 2011; 7 Clermont (CR2) 1972; 52 Crappe, Ndah, Koch (CR67) 2015; 43 Kleene (CR4) 2013; 146 Weiss, Meeks, Hurley, Raverot, Frassetto, Jameson (CR43) 2003; 23 Meyer, Saletore, Zumbo, Elemento, Mason, Jaffrey (CR7) 2012; 149 Wang, Zhao, Roundtree (CR8) 2015; 161 Hongay, Orr-Weaver (CR27) 2011; 108 JM Fustin (BFcr2017117_CR13) 2013; 155 MJ Clancy (BFcr2017117_CR32) 2002; 30 T Gallardo (BFcr2017117_CR29) 2007; 45 X Wang (BFcr2017117_CR31) 2016; 534 F Chan (BFcr2017117_CR38) 2014; 28 S Geula (BFcr2017117_CR23) 2015; 347 B Dass (BFcr2017117_CR50) 2007; 104 J Crappe (BFcr2017117_CR67) 2015; 43 XL Ping (BFcr2017117_CR20) 2014; 24 Y Chen (BFcr2017117_CR59) 2016; 143 D Kim (BFcr2017117_CR61) 2013; 14 BS Zhao (BFcr2017117_CR14) 2017; 542 G Zheng (BFcr2017117_CR22) 2013; 49 FW Buaas (BFcr2017117_CR47) 2004; 36 Y Wang (BFcr2017117_CR24) 2014; 16 CM Wei (BFcr2017117_CR9) 1975; 4 S Kawa (BFcr2017117_CR53) 2006; 103 NT Ingolia (BFcr2017117_CR69) 2011; 147 Q Zhou (BFcr2017117_CR45) 2008; 78 X Wang (BFcr2017117_CR8) 2015; 161 JA Bokar (BFcr2017117_CR18) 1997; 3 S Lin (BFcr2017117_CR17) 2016; 62 MM Laronda (BFcr2017117_CR42) 2011; 152 SD Agarwala (BFcr2017117_CR34) 2012; 8 KD Meyer (BFcr2017117_CR7) 2012; 149 S Zhang (BFcr2017117_CR15) 2017; 31 D Dominissini (BFcr2017117_CR6) 2012; 485 JC Shah (BFcr2017117_CR33) 1992; 12 KC Kleene (BFcr2017117_CR4) 2013; 146 MH Tong (BFcr2017117_CR56) 2012; 86 NT Ingolia (BFcr2017117_CR63) 2012; 7 IU Haussmann (BFcr2017117_CR25) 2016; 540 JA Costoya (BFcr2017117_CR48) 2004; 36 J Liu (BFcr2017117_CR19) 2014; 10 NT Ingolia (BFcr2017117_CR64) 2009; 324 JM Oatley (BFcr2017117_CR44) 2010; 83 RR Pandey (BFcr2017117_CR54) 2013; 110 M Martin (BFcr2017117_CR66) 2011; 17 MJ Goertz (BFcr2017117_CR37) 2011; 121 NT Ingolia (BFcr2017117_CR68) 2014; 8 S Schwartz (BFcr2017117_CR28) 2013; 155 S Anders (BFcr2017117_CR60) 2015; 31 Y Clermont (BFcr2017117_CR2) 1972; 52 CR Alarcon (BFcr2017117_CR5) 2015; 162 J Hao (BFcr2017117_CR41) 2008; 26 Z Xiao (BFcr2017117_CR65) 2016; 7 H Wang (BFcr2017117_CR49) 2016; 6 S Kuroki (BFcr2017117_CR51) 2013; 89 M Wang (BFcr2017117_CR40) 2017; 16 CA Hogarth (BFcr2017117_CR57) 2013; 88 Q Cui (BFcr2017117_CR16) 2017; 18 X Wang (BFcr2017117_CR10) 2014; 505 T Shirakawa (BFcr2017117_CR36) 2013; 140 JM Oatley (BFcr2017117_CR3) 2008; 24 MD Griswold (BFcr2017117_CR1) 2016; 96 J Zhou (BFcr2017117_CR11) 2015; 526 T Lence (BFcr2017117_CR26) 2016; 540 IA Roundtree (BFcr2017117_CR30) 2017; 169 F Supek (BFcr2017117_CR70) 2011; 6 CF Hongay (BFcr2017117_CR27) 2011; 108 KE Pendleton (BFcr2017117_CR35) 2017; 169 J Weiss (BFcr2017117_CR43) 2003; 23 G Jia (BFcr2017117_CR21) 2011; 7 Y Xiang (BFcr2017117_CR12) 2017; 543 BH Schrans-Stassen (BFcr2017117_CR39) 1999; 140 Y Cao (BFcr2017117_CR55) 2012; 59 ML Meyer-Ficca (BFcr2017117_CR52) 2015; 92 V Gaysinskaya (BFcr2017117_CR58) 2014; 85 Q Zhou (BFcr2017117_CR46) 2008; 79 MD Robinson (BFcr2017117_CR62) 2010; 26 |
References_xml | – volume: 89 start-page: 93 year: 2013 ident: CR51 article-title: JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice publication-title: Biol Reprod doi: 10.1095/biolreprod.113.108597 – volume: 152 start-page: 1606 year: 2011 end-page: 1615 ident: CR42 article-title: Sox3 functions in a cell-autonomous manner to regulate spermatogonial differentiation in mice publication-title: Endocrinology doi: 10.1210/en.2010-1249 – volume: 505 start-page: 117 year: 2014 end-page: 120 ident: CR10 article-title: -methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 – volume: 110 start-page: 16492 year: 2013 end-page: 16497 ident: CR54 article-title: Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1316316110 – volume: 8 start-page: 1365 year: 2014 end-page: 1379 ident: CR68 article-title: Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes publication-title: Cell Rep doi: 10.1016/j.celrep.2014.07.045 – volume: 6 start-page: e21800 year: 2011 ident: CR70 article-title: REVIGO summarizes and visualizes long lists of gene ontology terms publication-title: PLoS One doi: 10.1371/journal.pone.0021800 – volume: 4 start-page: 379 year: 1975 end-page: 386 ident: CR9 article-title: Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA publication-title: Cell doi: 10.1016/0092-8674(75)90158-0 – volume: 104 start-page: 20374 year: 2007 end-page: 20379 ident: CR50 article-title: Loss of polyadenylation protein tauCstF-64 causes spermatogenic defects and male infertility publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0707589104 – volume: 534 start-page: 575 year: 2016 end-page: 578 ident: CR31 article-title: Structural basis of -adenosine methylation by the METTL3-METTL14 complex publication-title: Nature doi: 10.1038/nature18298 – volume: 86 start-page: 72 year: 2012 ident: CR56 article-title: Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice publication-title: Biol Reprod doi: 10.1095/biolreprod.111.096313 – volume: 85 start-page: 556 year: 2014 end-page: 565 ident: CR58 article-title: Optimized flow cytometry isolation of murine spermatocytes publication-title: Cytometry A doi: 10.1002/cyto.a.22463 – volume: 540 start-page: 301 year: 2016 end-page: 304 ident: CR25 article-title: m A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination publication-title: Nature doi: 10.1038/nature20577 – volume: 88 start-page: 40 year: 2013 ident: CR57 article-title: Turning a spermatogenic wave into a tsunami: synchronizing murine spermatogenesis using WIN 18,446 publication-title: Biol Reprod doi: 10.1095/biolreprod.112.105346 – volume: 8 start-page: e1002732 year: 2012 ident: CR34 article-title: RNA methylation by the MIS complex regulates a cell fate decision in yeast publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002732 – volume: 43 start-page: e29 year: 2015 ident: CR67 article-title: PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1283 – volume: 526 start-page: 591 year: 2015 end-page: 594 ident: CR11 article-title: Dynamic m A mRNA methylation directs translational control of heat shock response publication-title: Nature doi: 10.1038/nature15377 – volume: 169 start-page: 1187 year: 2017 end-page: 1200 ident: CR30 article-title: Dynamic RNA modifications in gene expression regulation publication-title: Cell doi: 10.1016/j.cell.2017.05.045 – volume: 36 start-page: 647 year: 2004 end-page: 652 ident: CR47 article-title: Plzf is required in adult male germ cells for stem cell self-renewal publication-title: Nat Genet doi: 10.1038/ng1366 – volume: 543 start-page: 573 year: 2017 end-page: 576 ident: CR12 article-title: RNA m A methylation regulates the ultraviolet-induced DNA damage response publication-title: Nature doi: 10.1038/nature21671 – volume: 24 start-page: 263 year: 2008 end-page: 286 ident: CR3 article-title: Regulation of spermatogonial stem cell self-renewal in mammals publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.24.110707.175355 – volume: 146 start-page: R1 year: 2013 end-page: R19 ident: CR4 article-title: Connecting -elements and -factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells publication-title: Reproduction doi: 10.1530/REP-12-0362 – volume: 83 start-page: 427 year: 2010 end-page: 433 ident: CR44 article-title: Regulation of mouse spermatogonial stem cell differentiation by STAT3 signaling publication-title: Biol Reprod doi: 10.1095/biolreprod.109.083352 – volume: 162 start-page: 1299 year: 2015 end-page: 1308 ident: CR5 article-title: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events publication-title: Cell doi: 10.1016/j.cell.2015.08.011 – volume: 147 start-page: 789 year: 2011 end-page: 802 ident: CR69 article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes publication-title: Cell doi: 10.1016/j.cell.2011.10.002 – volume: 78 start-page: 537 year: 2008 end-page: 545 ident: CR45 article-title: Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid publication-title: Biol Reprod doi: 10.1095/biolreprod.107.064337 – volume: 103 start-page: 19344 year: 2006 end-page: 19349 ident: CR53 article-title: Azoospermia in mice with targeted disruption of the Brek/Lmtk2 (brain-enriched kinase/lemur tyrosine kinase 2) gene publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0603603103 – volume: 155 start-page: 793 year: 2013 end-page: 806 ident: CR13 article-title: RNA-methylation-dependent RNA processing controls the speed of the circadian clock publication-title: Cell doi: 10.1016/j.cell.2013.10.026 – volume: 7 start-page: 885 year: 2011 end-page: 887 ident: CR21 article-title: -methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO publication-title: Nat Chem Biol doi: 10.1038/nchembio.687 – volume: 143 start-page: 1502 year: 2016 end-page: 1511 ident: CR59 article-title: Retinoid signaling controls spermatogonial differentiation by regulating expression of replication-dependent core histone genes publication-title: Development doi: 10.1242/dev.135939 – volume: 52 start-page: 198 year: 1972 end-page: 236 ident: CR2 article-title: Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal publication-title: Physiol Rev doi: 10.1152/physrev.1972.52.1.198 – volume: 347 start-page: 1002 year: 2015 end-page: 1006 ident: CR23 article-title: Stem cells. m A mRNA methylation facilitates resolution of naive pluripotency toward differentiation publication-title: Science doi: 10.1126/science.1261417 – volume: 140 start-page: 3565 year: 2013 end-page: 3576 ident: CR36 article-title: An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity publication-title: Development doi: 10.1242/dev.094045 – volume: 7 start-page: 11194 year: 2016 ident: CR65 article-title: Genome-wide assessment of differential translations with ribosome profiling data publication-title: Nat Commun doi: 10.1038/ncomms11194 – volume: 542 start-page: 475 year: 2017 end-page: 478 ident: CR14 article-title: m A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition publication-title: Nature doi: 10.1038/nature21355 – volume: 155 start-page: 1409 year: 2013 end-page: 1421 ident: CR28 article-title: High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis publication-title: Cell doi: 10.1016/j.cell.2013.10.047 – volume: 24 start-page: 177 year: 2014 end-page: 189 ident: CR20 article-title: Mammalian WTAP is a regulatory subunit of the RNA -methyladenosine methyltransferase publication-title: Cell Res doi: 10.1038/cr.2014.3 – volume: 96 start-page: 1 year: 2016 end-page: 17 ident: CR1 article-title: Spermatogenesis: the commitment to meiosis publication-title: Physiol Rev doi: 10.1152/physrev.00013.2015 – volume: 18 start-page: 2622 year: 2017 end-page: 2634 ident: CR16 article-title: m A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells publication-title: Cell Rep doi: 10.1016/j.celrep.2017.02.059 – volume: 3 start-page: 1233 year: 1997 end-page: 1247 ident: CR18 article-title: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA ( -adenosine)-methyltransferase publication-title: RNA – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: CR60 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 108 start-page: 14855 year: 2011 end-page: 14860 ident: CR27 article-title: Drosophila inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1111577108 – volume: 28 start-page: 1351 year: 2014 end-page: 1362 ident: CR38 article-title: Functional and molecular features of the Id4+ germline stem cell population in mouse testes publication-title: Genes Dev doi: 10.1101/gad.240465.114 – volume: 7 start-page: 1534 year: 2012 end-page: 1550 ident: CR63 article-title: The ribosome profiling strategy for monitoring translation by deep sequencing of ribosome-protected mRNA fragments publication-title: Nat Protoc doi: 10.1038/nprot.2012.086 – volume: 16 start-page: 191 year: 2014 end-page: 198 ident: CR24 article-title: -methyladenosine modification destabilizes developmental regulators in embryonic stem cells publication-title: Nat Cell Biol doi: 10.1038/ncb2902 – volume: 62 start-page: 335 year: 2016 end-page: 345 ident: CR17 article-title: The m A methyltransferase METTL3 promotes translation in human cancer cells publication-title: Mol Cell doi: 10.1016/j.molcel.2016.03.021 – volume: 23 start-page: 8084 year: 2003 end-page: 8091 ident: CR43 article-title: Sox3 is required for gonadal function, but not sex determination, in males and females publication-title: Mol Cell Biol doi: 10.1128/MCB.23.22.8084-8091.2003 – volume: 169 start-page: 824 year: 2017 end-page: 835 ident: CR35 article-title: The U6 snRNA m A methyltransferase METTL16 regulates SAM synthetase intron retention publication-title: Cell doi: 10.1016/j.cell.2017.05.003 – volume: 6 start-page: 21776 year: 2016 ident: CR49 article-title: Knockout of BRD7 results in impaired spermatogenesis and male infertility publication-title: Sci Rep doi: 10.1038/srep21776 – volume: 161 start-page: 1388 year: 2015 end-page: 1399 ident: CR8 article-title: -methyladenosine modulates messenger RNA translation efficiency publication-title: Cell doi: 10.1016/j.cell.2015.05.014 – volume: 31 start-page: 591 year: 2017 end-page: 606 ident: CR15 article-title: m A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.013 – volume: 30 start-page: 4509 year: 2002 end-page: 4518 ident: CR32 article-title: Induction of sporulation in leads to the formation of -methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf573 – volume: 149 start-page: 1635 year: 2012 end-page: 1646 ident: CR7 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 79 start-page: 35 year: 2008 end-page: 42 ident: CR46 article-title: Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an study in vitamin A-sufficient postnatal murine testes publication-title: Biol Reprod doi: 10.1095/biolreprod.107.066795 – volume: 45 start-page: 413 year: 2007 end-page: 417 ident: CR29 article-title: Generation of a germ cell-specific mouse transgenic Cre line, publication-title: Genesis doi: 10.1002/dvg.20310 – volume: 324 start-page: 218 year: 2009 end-page: 223 ident: CR64 article-title: Genome-wide analysis of translation with nucleotide resolution using ribosome profiling publication-title: Science doi: 10.1126/science.1168978 – volume: 59 start-page: 989 year: 2012 end-page: 999 ident: CR55 article-title: Mice overexpression of human augmenter of liver regeneration (hALR) in male germ cells shows abnormal spermatogenesis and reduced fertility publication-title: Endocr J doi: 10.1507/endocrj.EJ12-0160 – volume: 10 start-page: 93 year: 2014 end-page: 95 ident: CR19 article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA -adenosine methylation publication-title: Nat Chem Biol doi: 10.1038/nchembio.1432 – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: CR62 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 49 start-page: 18 year: 2013 end-page: 29 ident: CR22 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 140 start-page: 5894 year: 1999 end-page: 5900 ident: CR39 article-title: Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia publication-title: Endocrinology doi: 10.1210/endo.140.12.7172 – volume: 540 start-page: 242 year: 2016 end-page: 247 ident: CR26 article-title: m A modulates neuronal functions and sex determination in Drosophila publication-title: Nature doi: 10.1038/nature20568 – volume: 36 start-page: 653 year: 2004 end-page: 659 ident: CR48 article-title: Essential role of Plzf in maintenance of spermatogonial stem cells publication-title: Nat Genet doi: 10.1038/ng1367 – volume: 12 start-page: 1078 year: 1992 end-page: 1086 ident: CR33 article-title: IME4, a gene that mediates MAT and nutritional control of meiosis in publication-title: Mol Cell Biol doi: 10.1128/MCB.12.3.1078 – volume: 26 start-page: 1587 year: 2008 end-page: 1597 ident: CR41 article-title: Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia publication-title: Stem Cells doi: 10.1634/stemcells.2007-0502 – volume: 92 start-page: 80 year: 2015 ident: CR52 article-title: Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice publication-title: Biol Reprod doi: 10.1095/biolreprod.114.123661 – volume: 14 start-page: R36 year: 2013 ident: CR61 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – volume: 121 start-page: 3456 year: 2011 end-page: 3466 ident: CR37 article-title: Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis publication-title: J Clin Invest doi: 10.1172/JCI57984 – volume: 16 start-page: 982 year: 2017 end-page: 997 ident: CR40 article-title: The glial cell-derived neurotrophic factor (GDNF)-responsive phosphoprotein landscape identifies raptor phosphorylation required for spermatogonial progenitor cell proliferation publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M116.065797 – volume: 485 start-page: 201 year: 2012 end-page: 206 ident: CR6 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature doi: 10.1038/nature11112 – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: CR66 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 6 start-page: 21776 year: 2016 ident: BFcr2017117_CR49 publication-title: Sci Rep doi: 10.1038/srep21776 – volume: 43 start-page: e29 year: 2015 ident: BFcr2017117_CR67 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1283 – volume: 96 start-page: 1 year: 2016 ident: BFcr2017117_CR1 publication-title: Physiol Rev doi: 10.1152/physrev.00013.2015 – volume: 110 start-page: 16492 year: 2013 ident: BFcr2017117_CR54 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1316316110 – volume: 24 start-page: 177 year: 2014 ident: BFcr2017117_CR20 publication-title: Cell Res doi: 10.1038/cr.2014.3 – volume: 526 start-page: 591 year: 2015 ident: BFcr2017117_CR11 publication-title: Nature doi: 10.1038/nature15377 – volume: 169 start-page: 824 year: 2017 ident: BFcr2017117_CR35 publication-title: Cell doi: 10.1016/j.cell.2017.05.003 – volume: 92 start-page: 80 year: 2015 ident: BFcr2017117_CR52 publication-title: Biol Reprod doi: 10.1095/biolreprod.114.123661 – volume: 147 start-page: 789 year: 2011 ident: BFcr2017117_CR69 publication-title: Cell doi: 10.1016/j.cell.2011.10.002 – volume: 540 start-page: 301 year: 2016 ident: BFcr2017117_CR25 publication-title: Nature doi: 10.1038/nature20577 – volume: 103 start-page: 19344 year: 2006 ident: BFcr2017117_CR53 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0603603103 – volume: 12 start-page: 1078 year: 1992 ident: BFcr2017117_CR33 publication-title: Mol Cell Biol doi: 10.1128/MCB.12.3.1078 – volume: 161 start-page: 1388 year: 2015 ident: BFcr2017117_CR8 publication-title: Cell doi: 10.1016/j.cell.2015.05.014 – volume: 26 start-page: 139 year: 2010 ident: BFcr2017117_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 17 start-page: 10 year: 2011 ident: BFcr2017117_CR66 publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 62 start-page: 335 year: 2016 ident: BFcr2017117_CR17 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.03.021 – volume: 104 start-page: 20374 year: 2007 ident: BFcr2017117_CR50 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0707589104 – volume: 89 start-page: 93 year: 2013 ident: BFcr2017117_CR51 publication-title: Biol Reprod doi: 10.1095/biolreprod.113.108597 – volume: 31 start-page: 591 year: 2017 ident: BFcr2017117_CR15 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.013 – volume: 45 start-page: 413 year: 2007 ident: BFcr2017117_CR29 publication-title: Genesis doi: 10.1002/dvg.20310 – volume: 88 start-page: 40 year: 2013 ident: BFcr2017117_CR57 publication-title: Biol Reprod doi: 10.1095/biolreprod.112.105346 – volume: 155 start-page: 1409 year: 2013 ident: BFcr2017117_CR28 publication-title: Cell doi: 10.1016/j.cell.2013.10.047 – volume: 16 start-page: 191 year: 2014 ident: BFcr2017117_CR24 publication-title: Nat Cell Biol doi: 10.1038/ncb2902 – volume: 86 start-page: 72 year: 2012 ident: BFcr2017117_CR56 publication-title: Biol Reprod doi: 10.1095/biolreprod.111.096313 – volume: 8 start-page: 1365 year: 2014 ident: BFcr2017117_CR68 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.07.045 – volume: 52 start-page: 198 year: 1972 ident: BFcr2017117_CR2 publication-title: Physiol Rev doi: 10.1152/physrev.1972.52.1.198 – volume: 14 start-page: R36 year: 2013 ident: BFcr2017117_CR61 publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – volume: 505 start-page: 117 year: 2014 ident: BFcr2017117_CR10 publication-title: Nature doi: 10.1038/nature12730 – volume: 6 start-page: e21800 year: 2011 ident: BFcr2017117_CR70 publication-title: PLoS One doi: 10.1371/journal.pone.0021800 – volume: 4 start-page: 379 year: 1975 ident: BFcr2017117_CR9 publication-title: Cell doi: 10.1016/0092-8674(75)90158-0 – volume: 162 start-page: 1299 year: 2015 ident: BFcr2017117_CR5 publication-title: Cell doi: 10.1016/j.cell.2015.08.011 – volume: 121 start-page: 3456 year: 2011 ident: BFcr2017117_CR37 publication-title: J Clin Invest doi: 10.1172/JCI57984 – volume: 16 start-page: 982 year: 2017 ident: BFcr2017117_CR40 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M116.065797 – volume: 155 start-page: 793 year: 2013 ident: BFcr2017117_CR13 publication-title: Cell doi: 10.1016/j.cell.2013.10.026 – volume: 152 start-page: 1606 year: 2011 ident: BFcr2017117_CR42 publication-title: Endocrinology doi: 10.1210/en.2010-1249 – volume: 347 start-page: 1002 year: 2015 ident: BFcr2017117_CR23 publication-title: Science doi: 10.1126/science.1261417 – volume: 30 start-page: 4509 year: 2002 ident: BFcr2017117_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf573 – volume: 485 start-page: 201 year: 2012 ident: BFcr2017117_CR6 publication-title: Nature doi: 10.1038/nature11112 – volume: 18 start-page: 2622 year: 2017 ident: BFcr2017117_CR16 publication-title: Cell Rep doi: 10.1016/j.celrep.2017.02.059 – volume: 24 start-page: 263 year: 2008 ident: BFcr2017117_CR3 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.24.110707.175355 – volume: 79 start-page: 35 year: 2008 ident: BFcr2017117_CR46 publication-title: Biol Reprod doi: 10.1095/biolreprod.107.066795 – volume: 146 start-page: R1 year: 2013 ident: BFcr2017117_CR4 publication-title: Reproduction doi: 10.1530/REP-12-0362 – volume: 23 start-page: 8084 year: 2003 ident: BFcr2017117_CR43 publication-title: Mol Cell Biol doi: 10.1128/MCB.23.22.8084-8091.2003 – volume: 140 start-page: 3565 year: 2013 ident: BFcr2017117_CR36 publication-title: Development doi: 10.1242/dev.094045 – volume: 543 start-page: 573 year: 2017 ident: BFcr2017117_CR12 publication-title: Nature doi: 10.1038/nature21671 – volume: 26 start-page: 1587 year: 2008 ident: BFcr2017117_CR41 publication-title: Stem Cells doi: 10.1634/stemcells.2007-0502 – volume: 143 start-page: 1502 year: 2016 ident: BFcr2017117_CR59 publication-title: Development doi: 10.1242/dev.135939 – volume: 10 start-page: 93 year: 2014 ident: BFcr2017117_CR19 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1432 – volume: 85 start-page: 556 year: 2014 ident: BFcr2017117_CR58 publication-title: Cytometry A doi: 10.1002/cyto.a.22463 – volume: 36 start-page: 653 year: 2004 ident: BFcr2017117_CR48 publication-title: Nat Genet doi: 10.1038/ng1367 – volume: 169 start-page: 1187 year: 2017 ident: BFcr2017117_CR30 publication-title: Cell doi: 10.1016/j.cell.2017.05.045 – volume: 7 start-page: 11194 year: 2016 ident: BFcr2017117_CR65 publication-title: Nat Commun doi: 10.1038/ncomms11194 – volume: 108 start-page: 14855 year: 2011 ident: BFcr2017117_CR27 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1111577108 – volume: 542 start-page: 475 year: 2017 ident: BFcr2017117_CR14 publication-title: Nature doi: 10.1038/nature21355 – volume: 149 start-page: 1635 year: 2012 ident: BFcr2017117_CR7 publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 78 start-page: 537 year: 2008 ident: BFcr2017117_CR45 publication-title: Biol Reprod doi: 10.1095/biolreprod.107.064337 – volume: 7 start-page: 885 year: 2011 ident: BFcr2017117_CR21 publication-title: Nat Chem Biol doi: 10.1038/nchembio.687 – volume: 59 start-page: 989 year: 2012 ident: BFcr2017117_CR55 publication-title: Endocr J doi: 10.1507/endocrj.EJ12-0160 – volume: 49 start-page: 18 year: 2013 ident: BFcr2017117_CR22 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 83 start-page: 427 year: 2010 ident: BFcr2017117_CR44 publication-title: Biol Reprod doi: 10.1095/biolreprod.109.083352 – volume: 31 start-page: 166 year: 2015 ident: BFcr2017117_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 534 start-page: 575 year: 2016 ident: BFcr2017117_CR31 publication-title: Nature doi: 10.1038/nature18298 – volume: 140 start-page: 5894 year: 1999 ident: BFcr2017117_CR39 publication-title: Endocrinology doi: 10.1210/endo.140.12.7172 – volume: 540 start-page: 242 year: 2016 ident: BFcr2017117_CR26 publication-title: Nature doi: 10.1038/nature20568 – volume: 8 start-page: e1002732 year: 2012 ident: BFcr2017117_CR34 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002732 – volume: 7 start-page: 1534 year: 2012 ident: BFcr2017117_CR63 publication-title: Nat Protoc doi: 10.1038/nprot.2012.086 – volume: 28 start-page: 1351 year: 2014 ident: BFcr2017117_CR38 publication-title: Genes Dev doi: 10.1101/gad.240465.114 – volume: 324 start-page: 218 year: 2009 ident: BFcr2017117_CR64 publication-title: Science doi: 10.1126/science.1168978 – volume: 3 start-page: 1233 year: 1997 ident: BFcr2017117_CR18 publication-title: RNA – volume: 36 start-page: 647 year: 2004 ident: BFcr2017117_CR47 publication-title: Nat Genet doi: 10.1038/ng1366 |
SSID | ssj0025451 |
Score | 2.6408825 |
Snippet | Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized... Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process... |
SourceID | pubmedcentral proquest crossref springer chongqing |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1216 |
SubjectTerms | 631/136/2434/1822 631/337/574 631/80/86 Biomedical and Life Sciences Cell Biology Cell proliferation Clonal deletion Deactivation Depletion Developmental stages Differentiation Gene expression Germ cells Inactivation Life Sciences Mice mRNA N6-methyladenosine Original original-article Pachytene Post-transcription Ribonucleic acid RNA RNA modification Rodents Spermatids Spermatocytes Spermatogenesis Spermatogonia Spermatozoa Spermiogenesis SSCS Stem cell transplantation Stem cells Transcription Translation 分化过程 基因表达调控 生殖细胞 突变小鼠 精原细胞 精子发生过程 |
Title | Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis |
URI | http://lib.cqvip.com/qk/85240X/201710/673587626.html https://link.springer.com/article/10.1038/cr.2017.117 https://www.proquest.com/docview/1947489481 https://www.proquest.com/docview/1940059030 https://pubmed.ncbi.nlm.nih.gov/PMC5630681 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9tVEh7QYwNEWBVkLqXSVYT23HSpwkmEEKi2tAq9S1y_AGV2gRoeOC_n89J2hUQT5Hik2357POd7-53AAMjlHUTLIiKDCVcOXMHYcsJz2RCU0V5xjB3-HosLif8appM2we3ZRtW2clEL6h1pfCNfOiMbQRK4Vn88_6BYNUo9K62JTQ-Qg-hyzCkK52uDS6nHXiDy4cNCYzk2WvSzLOhQizQOEWfJaIq3FXl7YO7KzZvp7XK-TJg8oXX1F9GF7uw02qR4WnD9s_wwZR7sN3UlXz-An-uTV3PGRn6b8yJzw9xumW4uBmfhmNBsHD081xqhAp3ema4qDTW8TLLcIHP7yZEAHGnzFa3KAtny68wuTj_--uStLUTiGJZVBOVOcVEWG0TxwP3x8m0lMq40CNapEKbhBtnK9lopNwlLUaJiZkuqGBajgw1qWX7sFVWpTmAkMnYplGB_jrJrY0kF9LGidaJ4YLSLICj1frl9w1GBoaLJShoRQA_uhXNVQs7jtUv5rl3f7MsV485sgJhxwMYrIi7nt4kO-5Yk7dHbpmvN0gAJ6tmd1jQAyJLUz15Gp9ty6IA0g2WroZDuO3NlnJ252G3EUlNYO_fO-b_N_jrSR6-P8kj-ISUTVzgMWzVj0_mm9Nv6qLvN3Efemfn4983_wDaZfsX |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGTQheEAzQygYUaXtBqq5N0rT3gNCATTe2q2DapL2VNkm3SXfttuuE7kvxGbHTP-MG4m1Pldo0seIktmP7Z4AtI1WBBOae8g3zhEJzh2DLPRFnIYsUEzGn3OFJIscn4utpeLoCv7pcGAqr7M5Ee1DrStEd-RCNbQJKEXHw8fLKo6pR5F3tSmg0y-LALH6iyTb_sP8F-bvN2N7u8eex11YV8BSP_dpTMYpsWegiROrwDe72iGVBrkcsj6Q2oTBoRRT-SKH4kqPQBFznTHKdjQwzUcGx3wewKjiaMgNY_bSbfDvqTTzUR6yJZwOVJMUOrTWJ7fFQEfpoEJGXlHAczqvy7Aql07I8vFVy74Zo3vHTWvG39xSetHqru9MstGewYso1eNhUslw8h-8TU9dT7g3tMxCezUhBbdadHSU7biI9KlW9mGaawMlRs3VnlabKYWbuzujC37gEWY7qc3VGp-_F_AWc3Mu8voRBWZVmHVyeBUXk5-QhzERR-JmQWRGEWodGSMZiBzb6-UsvG1QOClAL6WiXDrzvZjRVLdA51duYptbhzuNUXafECgI6d2Crb9z19M9mmx1r0naTz9PbJenAu_4zbk_yuWSlqW5sG5vfy30HoiWW9sMRwPfyl_Li3AJ9E3abpN63O-b_MfjfRL76P5Fv4dH4eHKYHu4nBxvwmP5qohI3YVBf35jXqF3V-Zt2Sbvw47530W9q5Tbr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIRAvCAaIsAFB2l6QrCa246QPE5oY1cZYBYhJfQuJ_2yT2mRbO039anw67pykpQPxtqdIiWNbPp_vznf3O4Btq7TDCZZMR5YzqdHcIdhyJrMi4anmMhOUO3w8VAcn8vMoGa3Bry4XhsIquzPRH9Sm1nRH3kNjm4BSZBb3XBsW8XV_8OHiklEFKfK0duU0mi1yZOc3aL5Ndw_3kdY7nA8-_fh4wNoKA0yLLJoxnaH4Vs64BGeKb5DzU17EpenzMlXGJtKiReGivkZRpvqJjYUpuRKm6FtuUyew33twPxVJTDyWjpbGHmom3tjzIUuKoog2mhT3rKcJhzROyV9KiA5ndXV6iXJqVTIu1d3bwZq3PLZeEA6ewONWgw33mi33FNZstQEPmpqW82fw7djOZmPBev4ZS-ZzU1CvDSffh3vhUDEqWj0fF4ZgylHHDSe1oRpidhpO6OrfhgRejop0fUrn8Pn0OZzcyaq-gPWqruxLCEURuzQqyVdYSOeiQqrCxYkxiZWK8yyAzcX65RcNPgeFqiV0yKsA3ncrmusW8pwqb4xz73oXWa6vciIFQZ4HsL1o3PX0z2ZbHWnylt2n-XJzBvBu8RkZlbwvRWXra9_GZ_qKKIB0haSL4Qjqe_VLdX7mIb8JxU1R7zsd8f8Y_O9Jvvr_JN_CQ-Sd_Mvh8GgTHtFPTXjiFqzPrq7ta1SzZuUbv59D-HnXDPQbguI5uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mettl3-%2FMettl14-mediated+mRNA+N6-methyladenosine+modulates+murine+spermatogenesis&rft.jtitle=Cell+research&rft.au=Lin%2C+Zhen&rft.au=Hsu%2C+Phillip+J&rft.au=Xing%2C+Xudong&rft.au=Fang%2C+Jianhuo&rft.date=2017-10-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=27&rft.issue=10&rft.spage=1216&rft.epage=1230&rft_id=info:doi/10.1038%2Fcr.2017.117&rft.externalDocID=10_1038_cr_2017_117 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg |