Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis
Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A...
Saved in:
Published in | Cell research Vol. 27; no. 10; pp. 1216 - 1230 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type At spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactiva- tion of the m6A RNA methyltransferase Mettl3 or Mettll4 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Com- bined deletion of Mettl3 and Mettll4 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettll4 in advanced germ cells show normal spermatogenesis. The sper- matids from d6uble-mutant mice exhibit impaired translation of haploid-specific genes that are esseritial for spermio- genesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis. |
---|---|
Bibliography: | Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type At spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactiva- tion of the m6A RNA methyltransferase Mettl3 or Mettll4 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Com- bined deletion of Mettl3 and Mettll4 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettll4 in advanced germ cells show normal spermatogenesis. The sper- matids from d6uble-mutant mice exhibit impaired translation of haploid-specific genes that are esseritial for spermio- genesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis. 31-1568 m6A RNA modification; Mettl3; Mettll4; spermatogonial stem cell; spermiogenesis ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These two authors contributed equally to this work. |
ISSN: | 1001-0602 1748-7838 1748-7838 |
DOI: | 10.1038/cr.2017.117 |