Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis

Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 27; no. 10; pp. 1216 - 1230
Main Authors Lin, Zhen, Hsu, Phillip J, Xing, Xudong, Fang, Jianhuo, Lu, Zhike, Zou, Qin, Zhang, Ke-Jia, Zhang, Xiao, Zhou, Yuchuan, Zhang, Teng, Zhang, Youcheng, Song, Wanlu, Jia, Guifang, Yang, Xuerui, He, Chuan, Tong, Ming-Han
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type At spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactiva- tion of the m6A RNA methyltransferase Mettl3 or Mettll4 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Com- bined deletion of Mettl3 and Mettll4 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettll4 in advanced germ cells show normal spermatogenesis. The sper- matids from d6uble-mutant mice exhibit impaired translation of haploid-specific genes that are esseritial for spermio- genesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis.
Bibliography:Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce hap- loid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type At spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactiva- tion of the m6A RNA methyltransferase Mettl3 or Mettll4 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Com- bined deletion of Mettl3 and Mettll4 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettll4 in advanced germ cells show normal spermatogenesis. The sper- matids from d6uble-mutant mice exhibit impaired translation of haploid-specific genes that are esseritial for spermio- genesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis.
31-1568
m6A RNA modification; Mettl3; Mettll4; spermatogonial stem cell; spermiogenesis
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These two authors contributed equally to this work.
ISSN:1001-0602
1748-7838
1748-7838
DOI:10.1038/cr.2017.117