Mixing enhancement by using electrokinetic instability under time-periodic electric field

Experimental studies have been performed to apply electrokinetic instability as a means of fluid mixing. A time-periodic electric field is introduced to excite the instability in a cross channel. It is generated by the sum of a static field and an alternating field. The characteristics of instabilit...

Full description

Saved in:
Bibliographic Details
Published inJournal of micromechanics and microengineering Vol. 15; no. 3; pp. 455 - 462
Main Authors Shin, S M, Kang, I S, Cho, Y-K
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.03.2005
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Experimental studies have been performed to apply electrokinetic instability as a means of fluid mixing. A time-periodic electric field is introduced to excite the instability in a cross channel. It is generated by the sum of a static field and an alternating field. The characteristics of instability have been considered with the frequency of applied electric field as a key parameter. Through the frequency sweeping from 0.1 Hz to 50 Hz, it has been found that the instability is most enhanced when the period of the applied electric field is close to half of the period of instability in the form of a sinusoidal wave generated under a the static electric field. This fact may be explained based on the concept of hydrodynamic resonance. The degree of mixing is evaluated quantitatively by analyzing the distribution of fluorescent dye and it is confirmed that there exists an optimal frequency for enhancement of fluid mixing. The existence of the optimal frequency is expected to provide a valuable guideline for the design of an efficient micro-mixer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/15/3/005