Texture Classification Using Dense Micro-Block Difference

This paper is devoted to the problem of texture classification. Motivated by recent advancements in the field of compressive sensing and keypoints descriptors, a set of novel features called dense micro-block difference (DMD) is proposed. These features provide highly descriptive representation of i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 25; no. 4; pp. 1604 - 1616
Main Authors Mehta, Rakesh, Egiazarian, Karen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper is devoted to the problem of texture classification. Motivated by recent advancements in the field of compressive sensing and keypoints descriptors, a set of novel features called dense micro-block difference (DMD) is proposed. These features provide highly descriptive representation of image patches by densely capturing the granularities at multiple scales and orientations. Unlike most of the earlier work on local features, the DMD does not involve any quantization, thus retaining the complete information. We demonstrate that the DMD have dimensionality much lower than Scale Invariant Feature Transform (SIFT) and can be computed using integral image much faster than SIFT. The proposed features are encoded using the Fisher vector method to obtain an image descriptor, which considers high-order statistics. The proposed image representation is combined with the linear support vector machine classifier. Extensive experiments are conducted on five texture data sets (KTH-TIPS, UMD, KTH-TIPS-2a, Brodatz, and Curet) using standard protocols. The results demonstrate that our approach outperforms the state-of-the-art in texture classification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2016.2526898