Hydrogel assisted photoreceptor delivery inhibits material transfer

Cell therapy holds tremendous promise for vision restoration; yet donor cell survival and integration continue to limit efficacy of these strategies. Transplanted photoreceptors, which mediate light sensitivity in the retina, transfer cytoplasmic components to host photoreceptors instead of integrat...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 298; p. 122140
Main Authors Ho, Margaret T., Ortin-Martinez, Arturo, Yan, Nicole E., Comanita, Lacrimioara, Gurdita, Akshay, Pham Truong, Victor, Cui, Hong, Wallace, Valerie A., Shoichet, Molly S.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cell therapy holds tremendous promise for vision restoration; yet donor cell survival and integration continue to limit efficacy of these strategies. Transplanted photoreceptors, which mediate light sensitivity in the retina, transfer cytoplasmic components to host photoreceptors instead of integrating into the tissue. Donor cell material transfer could, therefore, function as a protein augmentation strategy to restore photoreceptor function. Biomaterials, such as hyaluronan-based hydrogels, can support donor cell survival but have not been evaluated for effects on material transfer. With increased survival, we hypothesized that we would achieve greater material transfer; however, the opposite occurred. Photoreceptors delivered to the subretinal space in mice in a hyaluronan and methylcellulose (HAMC) hydrogel showed reduced material transfer. We examined mitochondria transfer in vitro and cytosolic protein transfer in vivo and demonstrate that HAMC significantly reduced transfer in both contexts, which we ascribe to reduced cell-cell contact. Nanotube-like donor cell protrusions were significantly reduced in the hydrogel-transplanted photoreceptors compared to the saline control group, which suggests that HAMC limits the contact required to the host retina for transfer. Thus, HAMC can be used to manipulate the behaviour of transplanted donor cells in cell therapy strategies. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2023.122140