Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays
We present a novel frequency-selective surface (FSS) design aimed at enhancing the performance of broad-band reconfigurable antenna apertures. In particular, reconfigurable printed dipole arrays are examined in the presence of a multilayer FSS. Of particular interest is the design of FSS structures...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 50; no. 12; pp. 1716 - 1724 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-926X 1558-2221 |
DOI | 10.1109/TAP.2002.807377 |
Cover
Loading…
Summary: | We present a novel frequency-selective surface (FSS) design aimed at enhancing the performance of broad-band reconfigurable antenna apertures. In particular, reconfigurable printed dipole arrays are examined in the presence of a multilayer FSS. Of particular interest is the design of FSS structures whose reflection coefficient has prespecified phase response over a broad set of frequencies. Previous FSSs primarily considered designs on the basis of the reflection coefficient amplitude and were intended for radome applications rather than substrates. Designing FSSs subject to phase requirements is seen to require some compromise in the magnitude. Broad-band requirements also present us with a need for noncommensurate FSS designs. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2002.807377 |