Reversible permeabilization of plasma membranes with an engineered switchable pore

By using an engineered, self-assembling, proteinaceous, 2-nm pore equipped with a metal-actuated switch, a technique to reversibly permeabilize the plasma membrane to small molecules (approximately 1000 Da) has been developed. We have demonstrated the dose-dependent permeabilization of fibroblasts b...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 15; no. 3; pp. 278 - 282
Main Authors RUSSO, M. J, BAYLEY, H, TONER, M
Format Journal Article
LanguageEnglish
Published New York, NY Nature 01.03.1997
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By using an engineered, self-assembling, proteinaceous, 2-nm pore equipped with a metal-actuated switch, a technique to reversibly permeabilize the plasma membrane to small molecules (approximately 1000 Da) has been developed. We have demonstrated the dose-dependent permeabilization of fibroblasts by pores designed to be blocked and unblocked by the addition and removal of microM concentrations of Zn2+. Further, we have shown that the activity of the switch allows permeabilized cells to maintain viability and ultrastructural integrity following the unconstrained flux of small molecules. This ability to control the transmembrane influx and efflux of molecules and thereby vary the intracellular environment yet maintain cell viability will impact an array of biological and medical problems.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1087-0156
1546-1696
DOI:10.1038/nbt0397-278