Scheduled control for robust attenuation of non-stationary sinusoidal disturbances with measurable frequencies
Attenuation of sinusoidal disturbances with uncertain yet online measurable frequencies is considered. The disturbances are modeled as the outputs of an undisturbed parameter-dependent exogenous system with a skew-symmetric system matrix, obtained in response to nonzero initial conditions. The probl...
Saved in:
Published in | Automatica (Oxford) Vol. 47; no. 3; pp. 504 - 514 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.03.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Attenuation of sinusoidal disturbances with uncertain yet online measurable frequencies is considered. The disturbances are modeled as the outputs of an undisturbed parameter-dependent exogenous system with a skew-symmetric system matrix, obtained in response to nonzero initial conditions. The problem is formulated for a parameter-dependent plant as the synthesis of a parameter-dependent controller in a way to ensure internal stability as well as a desired level of steady-state disturbance attenuation in the face of all admissible parameter variations. The solvability of this problem is first related to the existence of bounded solutions to a matrix differential regulator equation subject to an asymptotic norm constraint. Reformulating this as a parameter-dependent state-feedback like synthesis, based on which suitable solutions to the differential regulator equation can be obtained online, tractable solvability conditions are then provided in the form of parameter-dependent matrix inequalities. Controllers that solve the generalized asymptotic regulation problem are also parameterized in terms of the suitable solutions of the differential regulator equation and some free parameter-dependent matrices that are to be designed off-line to ensure stability. A procedure is then developed to design the free parameters in a way to achieve desirable transient behavior. The use of the developed synthesis procedure is illustrated on a simplified version of the course control problem in ship steering. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2011.01.017 |