Silicon-on-nothing MOSFETs: performance, short-channel effects, and backgate coupling

Silicon-on-nothing (SON) transistors with gate length varying from 0.25 /spl mu/m down to 80 nm exhibit excellent performance and scalability. The silicon-on-insulator (SOI)-like architecture with thin fully depleted Si film and ultrathin buried oxide results in attenuated short-channel effects (cha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 51; no. 2; pp. 240 - 245
Main Authors Pretet, J., Monfray, S., Cristoloveanu, S., Skotnicki, T.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Silicon-on-nothing (SON) transistors with gate length varying from 0.25 /spl mu/m down to 80 nm exhibit excellent performance and scalability. The silicon-on-insulator (SOI)-like architecture with thin fully depleted Si film and ultrathin buried oxide results in attenuated short-channel effects (charge sharing, DIBL and fringing fields), high current, and electron mobility. A new model accounts for the intrinsic mechanisms of operation in SON MOSFETs: i) substrate depletion governed by source and drain via doping modulation, ii) relatively low coupling between the front- and backgates, iii) role of ultrathin buried oxide. The proposed model reproduces the variations of the threshold voltage and subthreshold swing and is useful for further device optimization.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2003.822226