Effect of low temperatures on photochemical activity of PS1 reaction centers from Synechocystis sp. frozen under illumination

After cooling of Synechocystis sp. photosystem 1 (PS1) reaction centers (RC) to 160 K under illumination most of the photoactive pigment is fixed for a long time in the oxidized state. The same effect is observed in purple bacteria RC. The dark reduction kinetics of PS1 P700 chlorophyll, which still...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Moscow) Vol. 69; no. 12; pp. 1399 - 1402
Main Authors Knox, P P, Heinnickel, M, Rubin, A B
Format Journal Article
LanguageEnglish
Published United States Springer 01.12.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:After cooling of Synechocystis sp. photosystem 1 (PS1) reaction centers (RC) to 160 K under illumination most of the photoactive pigment is fixed for a long time in the oxidized state. The same effect is observed in purple bacteria RC. The dark reduction kinetics of PS1 P700 chlorophyll, which still retains its photochemical activity, in these samples was similar to that in samples cooled in the dark. We suggest that the photoinduced charge separation in PS1 RC, as well as in purple bacteria RC, is accompanied by conformational changes that can be fixed in samples cooled under illumination. As a result, the electrons photomobilized in RC cooled under illumination are unable to return backward the process of electron transfer to P700(+) after cessation of actinic illumination. Such irreversible trapping of electrons can take place in different parts of the PS1 RC electron acceptor chain.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2979
1608-3040
0320-9725
DOI:10.1007/s10541-005-0087-2