Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates

Membraneless compartments, also known as condensates, provide chemically distinct environments and thus spatially organize the cell. A well-studied example of condensates is P granules in the roundworm that play an important role in the development of the germline. P granules are RNA-rich protein co...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 37
Main Authors Fritsch, Anatol W, Diaz-Delgadillo, Andrés F, Adame-Arana, Omar, Hoege, Carsten, Mittasch, Matthäus, Kreysing, Moritz, Leaver, Mark, Hyman, Anthony A, Jülicher, Frank, Weber, Christoph A
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Membraneless compartments, also known as condensates, provide chemically distinct environments and thus spatially organize the cell. A well-studied example of condensates is P granules in the roundworm that play an important role in the development of the germline. P granules are RNA-rich protein condensates that share the key properties of liquid droplets such as a spherical shape, the ability to fuse, and fast diffusion of their molecular components. An outstanding question is to what extent phase separation at thermodynamic equilibrium is appropriate to describe the formation of condensates in an active cellular environment. To address this question, we investigate the response of P granule condensates in living cells to temperature changes. We observe that P granules dissolve upon increasing the temperature and recondense upon lowering the temperature in a reversible manner. Strikingly, this temperature response can be captured by in vivo phase diagrams that are well described by a Flory-Huggins model at thermodynamic equilibrium. This finding is surprising due to active processes in a living cell. To address the impact of such active processes on intracellular phase separation, we discuss temperature heterogeneities. We show that, for typical estimates of the density of active processes, temperature represents a well-defined variable and that mesoscopic volume elements are at local thermodynamic equilibrium. Our findings provide strong evidence that P granule assembly and disassembly are governed by phase separation based on local thermal equilibria where the nonequilibrium nature of the cytoplasm is manifested on larger scales.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: A.W.F. performed all in vivo measurements shown in this work; experiments are based on the findings of A.F.D.-D.’s thesis work on temperature response of P granules; A.F.D.-D. and A.A.H. initiated the project; A.W.F., O. A.-A., and C.A.W. developed the data analysis pipeline; A.W.F., O.A.-A., F.J., and C.A.W. worked on the theory and the fitting to the experimental data; C.H. performed immunoblotting and prepared the CRISPR worm lines; M.M. and M.K. contributed to the expertise of cellular temperature perturbations and the configuration of a spinning-disc setup; C.H. and M.L. performed and analyzed the brood size and the fertility measurements; and A.W.F., A.F.D.-D., O.A.-A., C.H., M.L., A.A.H., F.J., and C.A.W. conceived the project and wrote the paper.
1A.W.F., A.F.D.-D., and O.A.-A. contributed equally to this work.
Edited by Alexander Y. Grosberg, New York University, New York, NY, and accepted by Editorial Board Member Mehran Kardar July 19, 2021 (received for review February 10, 2021)
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2102772118