PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection

Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cel...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 382; no. 6666; p. eadg2253
Main Authors Fisch, Daniel, Pfleiderer, Moritz M, Anastasakou, Eleni, Mackie, Gillian M, Wendt, Fabian, Liu, Xiangyang, Clough, Barbara, Lara-Reyna, Samuel, Encheva, Vesela, Snijders, Ambrosius P, Bando, Hironori, Yamamoto, Masahiro, Beggs, Andrew D, Mercer, Jason, Shenoy, Avinash R, Wollscheid, Bernd, Maslowski, Kendle M, Galej, Wojtek P, Frickel, Eva-Maria
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 06.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.
AbstractList Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-gamma (IFNγ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1-expression in the absence of IFNγ killed the cells and induced Golgi fragmentation. IFNγ-exposure improved macrophage survival via the activity of the kinase PIM1. PIM1 phosphorylated GBP1 leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFNγ-signaling and depleted PIM1 thereby increasing GBP1-activity. While infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFNγ-signaling.
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)–inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling. Mammalian cells use guard mechanisms to monitor their functional pathways for interference by pathogens. Infection causes the production of the inflammatory cytokine interferon-γ (IFN-γ), which triggers the expression of hundreds of IFN-stimulated-genes, including the kinase PIM1 and GBP1, a membrane-perturbing GTPase. Fisch et al . identified a guard mechanism whereby PIM1 phosphorylates GBP1 and subjects it to sequestration by a 14-3-3 protein. In human macrophages, this mechanism was found to prevent GBP1 activity from causing Golgi fragmentation and cell death. Pathogens can interfere with IFN-γ signaling and thereby potentially escape immune detection. However, when this signaling is inhibited, short-lived PIM1 is degraded, which allows GBP1 to control pathogen growth. These findings suggest a model of IFN-γ–dependent protection of uninfected bystander cells against self-inflicted innate immune damage. —Stella M. Hurtley Phosphorylation of an IFN-γ–induced protein protects IFN-γ signaling and promotes bystander cell protection in human macrophages.
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.
Editor’s summaryMammalian cells use guard mechanisms to monitor their functional pathways for interference by pathogens. Infection causes the production of the inflammatory cytokine interferon-γ (IFN-γ), which triggers the expression of hundreds of IFN-stimulated-genes, including the kinase PIM1 and GBP1, a membrane-perturbing GTPase. Fisch et al. identified a guard mechanism whereby PIM1 phosphorylates GBP1 and subjects it to sequestration by a 14-3-3 protein. In human macrophages, this mechanism was found to prevent GBP1 activity from causing Golgi fragmentation and cell death. Pathogens can interfere with IFN-γ signaling and thereby potentially escape immune detection. However, when this signaling is inhibited, short-lived PIM1 is degraded, which allows GBP1 to control pathogen growth. These findings suggest a model of IFN-γ–dependent protection of uninfected bystander cells against self-inflicted innate immune damage. —Stella M. HurtleyINTRODUCTIONCells in infected tissues are exposed to inflammatory stimuli, including the innate and adaptive immunity–stimulating cytokine interferon-γ (IFN-γ). Although most tissue-resident and infiltrating cells are not infected, when exposed to IFN-γ, these bystander cells preemptively express a repertoire of interferon-stimulated genes (ISGs) with robust antimicrobial activities and the potential for self-harm. ISGs of the guanylate-binding protein (GBP) family are large, membrane-active guanosine triphosphatases (GTPases). GBPs can control intracellular microbes in various ways, most importantly by promoting membrane rupture and the release of microbial ligands and by the induction of programmed cell death, including pyroptosis and apoptosis. How uninfected cells protect themselves from the potentially self­-destructive actions of GBPs while keeping these proteins readily available to combat infection is unknown.RATIONALECells need to tightly control the activity of antimicrobial proteins but rapidly deploy them upon infection. How is this achieved in human cells? Posttranslational modifications, such as phosphorylation by protein kinases, enable rapid and precise control of protein activities. We studied the phosphorylation of GBP1, a typical ISG, and how this modification affects its function, activity, and localization in human macrophages.RESULTSEctopic expression of GBP1 in human macrophages led to changes in cell morphology, GBP1 accumulation at the Golgi apparatus, Golgi fragmentation, and uncontrolled cellular necrosis. These findings illustrate GBP1’s potential to inflict self-damage. This phenotype was mitigated by IFN-γ treatment, suggesting that another IFN-γ–inducible factor limited GBP1 activity. We identified the kinase PIM1 as being this factor. We generated a phosphorylation-specific antibody and used high-resolution mass spectrometry to demonstrate GBP1 phosphorylation at serine-156 (Ser156), which was guided by a basophilic PIM1 recognition motif. Ser156 is the central residue of a 14-3-3 protein binding motif, which suggests a switch-like function for its phosphorylation. Indeed, 14-3-3 proteins, especially 14-3-3σ, interacted with phosphorylated GBP1. In vitro reconstitution of this complex followed by single-particle cryo–electron microscopy confirmed a 14-3-3σ dimer grabbing onto the GBP1 GTPase domain. This binding locked GBP1 in a GTPase-inactive, monomeric state and restrained its activity in the macrophage cytosol. Expressing phosphorylation-deficient GBP1 mutants or mutants that could not be recognized by the kinase PIM1 or bound by 14-3-3σ led to uncontrolled GBP1 activation and subsequent cell death. Genetic depletion of either PIM1 or 14-3-3σ had similar outcomes, as did treatment with the GBP1:PIM1 interaction inhibitor NSC756093. Using the inhibitor in IFN-γ–activated patient-derived tumor organoids increased organoid death and prevented organoid reformation. Thus, we found that PIM1 and 14-3-3σ together controlled the activity of GBP1 in human cells. Disrupting PIM1-driven control of GBP1 has potential therapeutic implications for cancer therapy and innate immunity.We observed that PIM1 mRNA and protein were extremely short-lived. Infection with the apicomplexan parasite Toxoplasma gondii, a pathogen that resides within intracellular vacuoles and blocks IFN-γ signaling by means of the effector protein TgIST, led to fast depletion of PIM1. This in turn reduced GBP1 Ser156 phosphorylation levels and liberated GBP1 from 14-3-3σ sequestration. High-throughput imaging revealed that GBP1 then rapidly targeted Toxoplasma-containing vacuoles to improve control of the infection.CONCLUSIONThe IFN-γ–induced, short-lived kinase PIM1 guards the integrity of IFN-γ signaling and protects self-membranes by regulating the activity of the potent antimicrobial effector GBP1. Pathogens that block IFN-γ signaling, thereby reducing the levels of PIM1, are then exposed to GBP1-driven innate immune control. The phosphoregulation of GBP1 by PIM1 reveals an IFN-γ–dependent control mechanism that protects uninfected bystander cells from self-inflicted innate immune damage during the process of pathogen elimination.
Author Mercer, Jason
Maslowski, Kendle M
Frickel, Eva-Maria
Shenoy, Avinash R
Wollscheid, Bernd
Snijders, Ambrosius P
Anastasakou, Eleni
Encheva, Vesela
Fisch, Daniel
Mackie, Gillian M
Liu, Xiangyang
Lara-Reyna, Samuel
Clough, Barbara
Yamamoto, Masahiro
Galej, Wojtek P
Beggs, Andrew D
Bando, Hironori
Wendt, Fabian
Pfleiderer, Moritz M
AuthorAffiliation 10 Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
1 Host- Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
14 Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
7 Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
11 Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
16 School of Cancer Sciences, University of Glasgow, Glasgow, UK
15 Cancer Research UK Beatson Institute, Glasgow, UK
4 Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
13 The Francis Crick Institute, London, UK
5 Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland
8 Bruker Nederland BV
9 Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
12 MRC Centre for Molecular Bacteriology & Infectio
AuthorAffiliation_xml – name: 1 Host- Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
– name: 14 Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
– name: 5 Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland
– name: 6 Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
– name: 7 Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
– name: 8 Bruker Nederland BV
– name: 15 Cancer Research UK Beatson Institute, Glasgow, UK
– name: 12 MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
– name: 11 Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
– name: 4 Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
– name: 3 European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
– name: 10 Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
– name: 9 Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
– name: 13 The Francis Crick Institute, London, UK
– name: 2 Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
– name: 16 School of Cancer Sciences, University of Glasgow, Glasgow, UK
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-8155-0367
  surname: Fisch
  fullname: Fisch, Daniel
  organization: Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
– sequence: 2
  givenname: Moritz M
  orcidid: 0000-0002-2369-5824
  surname: Pfleiderer
  fullname: Pfleiderer, Moritz M
  organization: European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
– sequence: 3
  givenname: Eleni
  orcidid: 0000-0002-0606-3382
  surname: Anastasakou
  fullname: Anastasakou, Eleni
  organization: European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
– sequence: 4
  givenname: Gillian M
  orcidid: 0000-0001-7758-6570
  surname: Mackie
  fullname: Mackie, Gillian M
  organization: Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
– sequence: 5
  givenname: Fabian
  orcidid: 0000-0002-2501-536X
  surname: Wendt
  fullname: Wendt, Fabian
  organization: Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
– sequence: 6
  givenname: Xiangyang
  surname: Liu
  fullname: Liu, Xiangyang
  organization: European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
– sequence: 7
  givenname: Barbara
  orcidid: 0000-0002-3235-6170
  surname: Clough
  fullname: Clough, Barbara
  organization: Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
– sequence: 8
  givenname: Samuel
  orcidid: 0000-0002-9986-5279
  surname: Lara-Reyna
  fullname: Lara-Reyna, Samuel
  organization: Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
– sequence: 9
  givenname: Vesela
  surname: Encheva
  fullname: Encheva, Vesela
  organization: Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
– sequence: 10
  givenname: Ambrosius P
  orcidid: 0000-0002-5416-8592
  surname: Snijders
  fullname: Snijders, Ambrosius P
  organization: Bruker Nederland BV, Leiderdorp, Netherlands
– sequence: 11
  givenname: Hironori
  surname: Bando
  fullname: Bando, Hironori
  organization: Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
– sequence: 12
  givenname: Masahiro
  orcidid: 0000-0002-6821-2785
  surname: Yamamoto
  fullname: Yamamoto, Masahiro
  organization: Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
– sequence: 13
  givenname: Andrew D
  orcidid: 0000-0003-0784-2967
  surname: Beggs
  fullname: Beggs, Andrew D
  organization: Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
– sequence: 14
  givenname: Jason
  surname: Mercer
  fullname: Mercer, Jason
  organization: Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
– sequence: 15
  givenname: Avinash R
  orcidid: 0000-0001-6228-9303
  surname: Shenoy
  fullname: Shenoy, Avinash R
  organization: Inflammasome Biology Laboratory, The Francis Crick Institute, London, UK
– sequence: 16
  givenname: Bernd
  orcidid: 0000-0002-3923-1610
  surname: Wollscheid
  fullname: Wollscheid, Bernd
  organization: Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
– sequence: 17
  givenname: Kendle M
  orcidid: 0000-0003-1995-5424
  surname: Maslowski
  fullname: Maslowski, Kendle M
  organization: School of Cancer Sciences, University of Glasgow, Glasgow, UK
– sequence: 18
  givenname: Wojtek P
  orcidid: 0000-0001-8859-5229
  surname: Galej
  fullname: Galej, Wojtek P
  organization: European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
– sequence: 19
  givenname: Eva-Maria
  orcidid: 0000-0002-9515-3442
  surname: Frickel
  fullname: Frickel, Eva-Maria
  organization: Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37797010$$D View this record in MEDLINE/PubMed
BookMark eNpdkUFP3DAUhC1EBQvtmRuy1AuXgJ-9seNLpYJaikRVDq3Um-XYL8EosbexsxL_vlmxRW1P7zDfjN5oTshhTBEJOQN2CcDlVXYBo8NL63vOa3FAVsB0XWnOxCFZMSZk1TBVH5OTnJ8YWzQtjsixUEorBmxFfj7cfQXqUixTGjK9vX4Aal0J21CeaUl0CGMoNOPQVd6Otkdqo98J_WwnT21vQ8yFbmx5TD1GGmKHiz3Ft-RNZ4eM7_b3lPz4_On7zZfq_tvt3c3H-8qJhpVq3SjWdl4624JQel2j402tXdd4D7r2stXKM4dcNwCttMx24LQXKLWS3KE4JR9ecjdzO6J3uDSxg9lMYbTTs0k2mH-VGB5Nn7ZGSahByyXgYh8wpV8z5mLGkB0Og42Y5mx4o9ZcCrZuFvT9f-hTmqe41NtRXAsAUS_U1QvlppTzhN3rM8DMbjWzX83sV1sc5393eOX_zCR-Axrxl8o
CitedBy_id crossref_primary_10_1038_s41586_024_07614_7
crossref_primary_10_1126_science_adl2016
crossref_primary_10_3389_fimmu_2024_1356216
crossref_primary_10_1128_msphere_00511_23
crossref_primary_10_1128_mbio_03302_23
Cites_doi 10.1128/MCB.00664-13
10.31305/rrijm.2020.v05.i05.007
10.3389/fonc.2022.920444
10.1038/nri3210
10.1128/mBio.01979-17
10.1093/molbev/mst010
10.1126/science.1217141
10.1074/jbc.M510711200
10.1084/jem.187.5.675
10.1093/nar/25.17.3389
10.1371/journal.pone.0127966
10.1101/2020.05.27.120477
10.1016/j.gpb.2020.01.001
10.1128/IAI.01862-06
10.3390/cancers12020488
10.1105/tpc.108.060194
10.1016/S0021-9258(19)78125-3
10.1128/iai.63.11.4495-4500.1995
10.1016/j.celrep.2020.108008
10.1016/j.cell.2013.03.044
10.1158/0008-5472.CAN-08-0634
10.1126/science.1201711
10.1016/j.jmb.2005.02.039
10.1038/ni.3457
10.7554/eLife.11479
10.1038/sj.onc.1208548
10.1093/bioinformatics/btv133
10.1016/j.immuni.2021.04.012
10.1038/onc.2009.276
10.1038/nmeth.3047
10.1021/jm5009902
10.4161/auto.22482
10.7554/eLife.40560
10.1038/nmeth.4169
10.1038/nmeth.2019
10.1126/scitranslmed.aaf1471
10.1038/nmeth.2557
10.3389/fcimb.2019.00460
10.1038/nbt1036
10.1084/jem.20160340
10.3389/fimmu.2019.01531
10.1186/1471-2121-7-1
10.1038/sj.onc.1210323
10.1101/2021.08.26.457804
10.1093/bioinformatics/btr065
10.1186/1471-2105-8-312
10.15252/embj.2018100926
10.1038/s41592-019-0575-8
10.1139/o97-026
10.1002/art.21050
10.1074/jbc.M500982200
10.1074/jbc.RA120.015398
10.4049/jimmunol.163.7.3898
10.1038/s41564-019-0623-2
10.1038/nbt.1511
10.1084/jem.20182031
10.1038/s41590-020-0697-2
10.1128/JVI.00533-12
10.21769/BioProtoc.2292
10.1093/emboj/19.17.4555
10.21608/ijssaa.2021.159808
10.1182/blood.V85.12.3494.bloodjournal85123494
10.1038/35000617
10.1002/pmic.200300771
10.1073/pnas.1601700113
10.1073/pnas.1619665114
10.1038/s41586-021-04054-5
10.1016/S0968-0004(98)01311-5
10.1083/jcb.200709091
10.1016/j.tibs.2011.10.005
10.1016/j.chom.2016.06.006
10.1074/mcp.TIR118.001209
10.15252/embj.2020104926
10.1371/journal.pone.0014246
10.1128/JVI.75.7.3185-3196.2001
10.1002/pro.3943
10.14440/jbm.2017.161
10.1093/nar/gky1106
10.1073/pnas.96.15.8511
10.1073/pnas.0503227102
10.1016/j.febslet.2004.06.050
10.1111/cmi.13349
10.1038/s41467-020-16889-z
ContentType Journal Article
Copyright Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.adg2253
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage eadg2253
ExternalDocumentID 10_1126_science_adg2253
37797010
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: FC001076
– fundername: Wellcome Trust
  grantid: FC001076
– fundername: Cancer Research UK
  grantid: FC001076
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABCQX
ABDBF
ABEFU
ABIVO
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADDRP
ADUKH
AEGBM
AENEX
AEUPB
AFFNX
AFHKK
AFQFN
AFRAH
AFRQD
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
B-7
BKF
BLC
C45
CGR
CS3
CUY
CVF
DB2
DU5
EBS
ECM
EIF
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YJ6
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
AETEA
PV9
ID FETCH-LOGICAL-c380t-4870bfd6cab137945ec2859cf8dd195d6b97d0ce29811b6a0af1c9d3e69762ce3
ISSN 0036-8075
1095-9203
IngestDate Tue Sep 17 21:29:29 EDT 2024
Thu Dec 05 20:55:59 EST 2024
Thu Dec 05 18:00:29 EST 2024
Fri Dec 06 04:05:55 EST 2024
Sat Nov 02 12:27:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6666
Language English
License This work is licensed under a BY 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-4870bfd6cab137945ec2859cf8dd195d6b97d0ce29811b6a0af1c9d3e69762ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0784-2967
0000-0001-6228-9303
0000-0002-2501-536X
0000-0002-9515-3442
0000-0002-3923-1610
0000-0002-5416-8592
0000-0002-3235-6170
0000-0002-6821-2785
0000-0002-9986-5279
0000-0002-8155-0367
0000-0001-7758-6570
0000-0002-2369-5824
0000-0003-1995-5424
0000-0002-0606-3382
0000-0001-8859-5229
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7615196
PMID 37797010
PQID 2872931135
PQPubID 1256
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615196
proquest_miscellaneous_2874263048
proquest_journals_2872931135
crossref_primary_10_1126_science_adg2253
pubmed_primary_37797010
PublicationCentury 2000
PublicationDate 2023-10-06
20231006
PublicationDateYYYYMMDD 2023-10-06
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2023
Publisher The American Association for the Advancement of Science
Publisher_xml – sequence: 0
  name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
cr-split#-e_1_3_2_13_2.2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
e_1_3_2_15_2
cr-split#-e_1_3_2_19_2.2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
cr-split#-e_1_3_2_19_2.1
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
cr-split#-e_1_3_2_13_2.1
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
References_xml – ident: e_1_3_2_29_2
  doi: 10.1128/MCB.00664-13
– ident: #cr-split#-e_1_3_2_13_2.2
  doi: 10.31305/rrijm.2020.v05.i05.007
– ident: e_1_3_2_53_2
  doi: 10.3389/fonc.2022.920444
– ident: e_1_3_2_2_2
  doi: 10.1038/nri3210
– ident: e_1_3_2_10_2
  doi: 10.1128/mBio.01979-17
– ident: e_1_3_2_75_2
  doi: 10.1093/molbev/mst010
– ident: e_1_3_2_7_2
  doi: 10.1126/science.1217141
– ident: e_1_3_2_26_2
  doi: 10.1074/jbc.M510711200
– ident: e_1_3_2_37_2
  doi: 10.1084/jem.187.5.675
– ident: e_1_3_2_74_2
  doi: 10.1093/nar/25.17.3389
– ident: e_1_3_2_66_2
  doi: 10.1371/journal.pone.0127966
– ident: #cr-split#-e_1_3_2_13_2.1
  doi: 10.1101/2020.05.27.120477
– ident: e_1_3_2_81_2
  doi: 10.1016/j.gpb.2020.01.001
– ident: e_1_3_2_82_2
  doi: 10.1128/IAI.01862-06
– ident: e_1_3_2_33_2
  doi: 10.3390/cancers12020488
– ident: e_1_3_2_46_2
  doi: 10.1105/tpc.108.060194
– ident: e_1_3_2_20_2
  doi: 10.1016/S0021-9258(19)78125-3
– ident: e_1_3_2_38_2
  doi: 10.1128/iai.63.11.4495-4500.1995
– ident: e_1_3_2_14_2
  doi: 10.1016/j.celrep.2020.108008
– ident: e_1_3_2_30_2
  doi: 10.1016/j.cell.2013.03.044
– ident: e_1_3_2_45_2
  doi: 10.1158/0008-5472.CAN-08-0634
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1201711
– ident: e_1_3_2_23_2
  doi: 10.1016/j.jmb.2005.02.039
– ident: e_1_3_2_50_2
  doi: 10.1038/ni.3457
– ident: e_1_3_2_18_2
  doi: 10.7554/eLife.11479
– ident: e_1_3_2_43_2
  doi: 10.1038/sj.onc.1208548
– ident: e_1_3_2_79_2
  doi: 10.1093/bioinformatics/btv133
– ident: e_1_3_2_52_2
  doi: 10.1016/j.immuni.2021.04.012
– ident: e_1_3_2_44_2
  doi: 10.1038/onc.2009.276
– ident: e_1_3_2_54_2
  doi: 10.1038/nmeth.3047
– ident: e_1_3_2_22_2
  doi: 10.1021/jm5009902
– ident: e_1_3_2_9_2
  doi: 10.4161/auto.22482
– ident: e_1_3_2_64_2
  doi: 10.7554/eLife.40560
– ident: e_1_3_2_71_2
  doi: 10.1038/nmeth.4169
– ident: e_1_3_2_67_2
  doi: 10.1038/nmeth.2019
– ident: e_1_3_2_49_2
  doi: 10.1126/scitranslmed.aaf1471
– ident: e_1_3_2_63_2
  doi: 10.1038/nmeth.2557
– ident: e_1_3_2_41_2
  doi: 10.3389/fcimb.2019.00460
– ident: e_1_3_2_69_2
  doi: 10.1038/nbt1036
– ident: e_1_3_2_31_2
  doi: 10.1084/jem.20160340
– ident: e_1_3_2_40_2
  doi: 10.3389/fimmu.2019.01531
– ident: e_1_3_2_27_2
  doi: 10.1186/1471-2121-7-1
– ident: e_1_3_2_34_2
  doi: 10.1038/sj.onc.1210323
– ident: #cr-split#-e_1_3_2_19_2.1
  doi: 10.1101/2021.08.26.457804
– ident: e_1_3_2_55_2
  doi: 10.1093/bioinformatics/btr065
– ident: e_1_3_2_76_2
  doi: 10.1186/1471-2105-8-312
– ident: e_1_3_2_12_2
  doi: 10.15252/embj.2018100926
– ident: e_1_3_2_72_2
  doi: 10.1038/s41592-019-0575-8
– ident: e_1_3_2_28_2
  doi: 10.1139/o97-026
– ident: e_1_3_2_47_2
  doi: 10.1002/art.21050
– ident: e_1_3_2_56_2
  doi: 10.1074/jbc.M500982200
– ident: e_1_3_2_68_2
  doi: 10.1074/jbc.RA120.015398
– ident: e_1_3_2_35_2
  doi: 10.4049/jimmunol.163.7.3898
– ident: e_1_3_2_4_2
  doi: 10.1038/s41564-019-0623-2
– ident: e_1_3_2_60_2
  doi: 10.1038/nbt.1511
– ident: e_1_3_2_5_2
  doi: 10.1084/jem.20182031
– ident: e_1_3_2_8_2
  doi: 10.1038/s41590-020-0697-2
– ident: e_1_3_2_39_2
  doi: 10.1128/JVI.00533-12
– ident: e_1_3_2_58_2
  doi: 10.21769/BioProtoc.2292
– ident: e_1_3_2_77_2
  doi: 10.1093/emboj/19.17.4555
– ident: #cr-split#-e_1_3_2_19_2.2
  doi: 10.21608/ijssaa.2021.159808
– ident: e_1_3_2_24_2
  doi: 10.1182/blood.V85.12.3494.bloodjournal85123494
– ident: e_1_3_2_78_2
  doi: 10.1038/35000617
– ident: e_1_3_2_80_2
  doi: 10.1002/pmic.200300771
– ident: e_1_3_2_48_2
  doi: 10.1073/pnas.1601700113
– ident: e_1_3_2_11_2
  doi: 10.1073/pnas.1619665114
– ident: e_1_3_2_51_2
  doi: 10.1038/s41586-021-04054-5
– ident: e_1_3_2_3_2
  doi: 10.1016/S0968-0004(98)01311-5
– ident: e_1_3_2_57_2
  doi: 10.1083/jcb.200709091
– ident: e_1_3_2_70_2
  doi: 10.1016/j.tibs.2011.10.005
– ident: e_1_3_2_32_2
  doi: 10.1016/j.chom.2016.06.006
– ident: e_1_3_2_61_2
  doi: 10.1074/mcp.TIR118.001209
– ident: e_1_3_2_15_2
  doi: 10.15252/embj.2020104926
– ident: e_1_3_2_17_2
  doi: 10.1371/journal.pone.0014246
– ident: e_1_3_2_36_2
  doi: 10.1128/JVI.75.7.3185-3196.2001
– ident: e_1_3_2_73_2
  doi: 10.1002/pro.3943
– ident: e_1_3_2_59_2
  doi: 10.14440/jbm.2017.161
– ident: e_1_3_2_62_2
  doi: 10.1093/nar/gky1106
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.96.15.8511
– ident: e_1_3_2_21_2
  doi: 10.1073/pnas.0503227102
– ident: e_1_3_2_25_2
  doi: 10.1016/j.febslet.2004.06.050
– ident: e_1_3_2_65_2
  doi: 10.1111/cmi.13349
– ident: e_1_3_2_16_2
  doi: 10.1038/s41467-020-16889-z
SSID ssj0009593
Score 2.535241
Snippet Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such...
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)–inducible antimicrobial factors, such...
Editor’s summaryMammalian cells use guard mechanisms to monitor their functional pathways for interference by pathogens. Infection causes the production of the...
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-gamma (IFNγ)-inducible antimicrobial factors,...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage eadg2253
SubjectTerms 14-3-3 protein
14-3-3 Proteins - metabolism
Antibodies
Apoptosis
Cell activation
Cell death
Cell morphology
Cytokines
Cytology
Cytosol
Damage
Depletion
Electron microscopy
Exposure
Fragmentation
Genes
Golgi cells
GTP-Binding Proteins - genetics
GTP-Binding Proteins - metabolism
Guanylate-binding protein
Guards
Host-Pathogen Interactions - immunology
Humans
Immunity, Innate
Infections
Inflammation
Innate immunity
Interferon
Interferon-gamma - metabolism
Intracellular
Intracellular signalling
Kinases
Literary Devices
Localization
Macrophages
Macrophages - immunology
Mammalian cells
Mass spectrometry
Mass spectroscopy
Membranes
Microorganisms
Mortality
mRNA
Mutants
Necrosis
Parasites
Pathogens
Phenotypes
Phosphorylation
Proteins
Proto-Oncogene Proteins c-pim-1 - metabolism
Self-injury
Toxoplasma
Toxoplasmosis - immunology
Vacuoles
Virulence Factors - metabolism
γ-Interferon
Title PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection
URI https://www.ncbi.nlm.nih.gov/pubmed/37797010
https://www.proquest.com/docview/2872931135
https://www.proquest.com/docview/2874263048
https://pubmed.ncbi.nlm.nih.gov/PMC7615196
Volume 382
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiJZHAwUtEoeiyJXXjl_HgJoU1JQeEsk3a71ep1aDjWrnQH8HP5jZh7ebkkPhYkXeV7Tz7Xhmd_YbhD66MaX5mIpT_5g749z3nSQoPacsXZoU8ZhGkp1_fhGeLcff0iAdDH5bUUubLj9htzvvlfyPVOEdyFXckv0HyZpO4QX8BvnCEyQMzwfJ-PLrnPTB5u1o9vmSSG4MmQ4CbMq1uLw0avm6dAr6QwTnyHDJZrQSuBjRFa3AOBTUqlcNjGECs2rbYu0XP1ii5nTHkqkJU5yoYII-tkA3szYaplWr0k6pW-1GJ5drLjOGSujMm5uqu73bop3UFMzXll43GxWExuvK2kS_VqcrM7lpVOtmeg_DU9FwoaV2XZEx0nOVquM73mld7ceeBUpwvWzlC4tiBerJ3_1lsHJZ8hOr5jYH98X3bLo8P88Wp-niEXos6BVFRoZZSu5TOZv_pwmjrKtYfffbts5fDsz9OFzLsFk8R8-0R4InCl77aMDrA_RE5Sj9dYD2tSRbfKwpyj-9QKlAHu6RhwXycI883DVYIg9byMOAPFEgkYc18nCPPGyQ9xItp6eLL2eOztHhMD92Owf8XTcvi5DRnPig2wPOBCUiK-OiIElQhHkSFS7jXhITkofUpSVhSeHzEOxgj3H_Fdqrm5ofIlyAXmA0ZOOSivTREeXiyJ7FDNrykAdDdNzPZvZTUbFk0oX1wkxPfKYnfoiO-tnO9HptMy8GR9InxIeePphi0KbiiIzWvNnIOiKDAXzWhui1Eo4ZS1BzRi5xhyjaEpupIJjat0vq6koytkfCb0jCNw8Y9y16erdCjtBed7Ph78Du7fL3EoZ_ABPNs4U
link.rule.ids 230,314,780,784,885,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PIM1+controls+GBP1+activity+to+limit+self-damage+and+to+guard+against+pathogen+infection&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Fisch%2C+Daniel&rft.au=Pfleiderer%2C+Moritz+M&rft.au=Anastasakou%2C+Eleni&rft.au=Mackie%2C+Gillian+M&rft.date=2023-10-06&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=382&rft.issue=6666&rft.spage=eadg2253&rft_id=info:doi/10.1126%2Fscience.adg2253&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon