Finite-time multi-agent deployment: A nonlinear PDE motion planning approach
The systematic flatness-based motion planning using formal power series and suitable summability methods is considered for the finite-time deployment of multi-agent systems into planar formation profiles along predefined spatial–temporal paths. Thereby, a distributed-parameter setting is proposed, w...
Saved in:
Published in | Automatica (Oxford) Vol. 47; no. 11; pp. 2534 - 2542 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The systematic flatness-based motion planning using formal power series and suitable summability methods is considered for the finite-time deployment of multi-agent systems into planar formation profiles along predefined spatial–temporal paths. Thereby, a distributed-parameter setting is proposed, where the collective leader–follower agent dynamics is modeled by two boundary controlled nonlinear time-varying PDEs governing the motion of an agent continuum in the plane. The discretization of the PDE model directly induces a decentralized communication and interconnection structure for the multi-agent system, which is required to achieve the desired spatial–temporal paths and deployment formations. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2011.08.045 |