Direct Energy Deposition of Cu-Fe System Functionally Graded Structures
The paper demonstrates the results of microstructure, microhardness and elasticity analysis of the functionally graded (FG) specimens with multilayer structure created of stainless steel and aluminium bronze powder materials via direct energy deposition (DED) laser technology. Increase of microhardn...
Saved in:
Published in | IOP conference series. Materials Science and Engineering Vol. 969; no. 1; pp. 12104 - 12111 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The paper demonstrates the results of microstructure, microhardness and elasticity analysis of the functionally graded (FG) specimens with multilayer structure created of stainless steel and aluminium bronze powder materials via direct energy deposition (DED) laser technology. Increase of microhardness (up to 266 HV) and Young's modulus of elasticity (up to 43.2 GPa) along with growth of the dendritic crystals in the gradient structures are observed. The results of numerical simulation demonstrate stress distribution in FG Cu-Fe system structure with a sharp interface. The results of the research can be used for 3D-printing of the aerospace industry details created from two kinds of material with rather different thermomechanical properties. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/969/1/012104 |