A Scalable Parallel Wideband MLFMA for Efficient Electromagnetic Simulations on Large Scale Clusters

The development of the multilevel fast multipole algorithm (MLFMA) and its multiscale variants have enabled the use of integral equation (IE) based solvers to compute scattering from complicated structures. Development of scalable parallel algorithms, to extend the reach of these solvers, has been a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 59; no. 7; pp. 2565 - 2577
Main Authors Melapudi, V., Shanker, B., Seal, S., Aluru, S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-926X
1558-2221
DOI10.1109/TAP.2011.2152311

Cover

Loading…
More Information
Summary:The development of the multilevel fast multipole algorithm (MLFMA) and its multiscale variants have enabled the use of integral equation (IE) based solvers to compute scattering from complicated structures. Development of scalable parallel algorithms, to extend the reach of these solvers, has been a topic of intense research for about a decade. In this paper, we present a new algorithm for parallel implementation of IE solver that is augmented with a wideband MLFMA and scalable on large number of processors. The wideband MLFMA employed here, to handle multiscale problems, is a hybrid combination of the accelerated Cartesian expansion (ACE) and the classical MLFMA. The salient feature of the presented parallel algorithm is that it is implicitly load balanced and exhibits higher performance. This is achieved by developing a strategy to partition the MLFMA tree, and hence the associated computations, in a self-similar fashion among the parallel processors. As detailed in the paper, the algorithm employs both spatial and direction partitioning approaches in a flexible manner to ensure scalable performance. Plethora of results are presented here to exhibit the scalability of this algorithm on 512 and more processors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
DE-AC05-00OR22725
USDOE Office of Science (SC)
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2011.2152311