Circadian coupling of mitochondria in a deep-diving mammal

Regulation of mitochondrial oxidative phosphorylation is essential to match energy supply to changing cellular energy demands, and to cope with periods of hypoxia. Recent work implicates the circadian molecular clock in control of mitochondrial function and hypoxia sensing. Because diving mammals ex...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 227; no. 7
Main Authors Ciccone, Chiara, Kante, Fayiri, Folkow, Lars P, Hazlerigg, David G, West, Alexander C, Wood, Shona H
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Ltd 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Regulation of mitochondrial oxidative phosphorylation is essential to match energy supply to changing cellular energy demands, and to cope with periods of hypoxia. Recent work implicates the circadian molecular clock in control of mitochondrial function and hypoxia sensing. Because diving mammals experience intermittent episodes of severe hypoxia, with diel patterning in dive depth and duration, it is interesting to consider circadian-mitochondrial interaction in this group. Here, we demonstrate that the hooded seal (Cystophora cristata), a deep-diving Arctic pinniped, shows strong daily patterning of diving behaviour in the wild. Cultures of hooded seal skin fibroblasts exhibit robust circadian oscillation of the core clock genes per2 and arntl. In liver tissue collected from captive hooded seals, expression of arntl was some 4-fold higher in the middle of the night than in the middle of the day. To explore the clock-mitochondria relationship, we measured the mitochondrial oxygen consumption in synchronized hooded seal skin fibroblasts and found a circadian variation in mitochondrial activity, with higher coupling efficiency of complex I coinciding with the trough of arntl expression. These results open the way for further studies of circadian-hypoxia interactions in pinnipeds during diving.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no competing or financial interests.
Competing interests
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.246990