Quantum entanglement of helium-like systems with varying-Z: compact state-of-the-art CI wave functions
In this work we have performed state-of-the-art configuration-interaction (CI) calculations to determine the linear and von Neumann entanglement entropies for the helium-like systems with varying nuclear charge Z in the range . The focus of the work resides on determining accurate entanglement value...
Saved in:
Published in | Journal of physics. B, Atomic, molecular, and optical physics Vol. 48; no. 17; pp. 175002 - 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
14.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work we have performed state-of-the-art configuration-interaction (CI) calculations to determine the linear and von Neumann entanglement entropies for the helium-like systems with varying nuclear charge Z in the range . The focus of the work resides on determining accurate entanglement values for 2-electron systems with the lowest computational cost through compact CI-wave functions. Our entanglement results for the helium atom fully agree with the results obtained with higher quality wave functions of the Kinoshita type (Dehesa [5]). We find that the correlation energy is linearly related to the entanglement measures associated with the linear and von Neumann entropies of the single-particle reduced density matrizes, which sheds new light on the physical implications of entanglement in helium-like systems. Moreover, we report CI-wave-function-based benchmark results for the entanglement values for all members of the helium isoelectronic series with an accuracy similar to that of Kinoshita-type wave functions. Finally, we give parametric expressions of the linear and von Neumann entanglement measures for two-electron systems as Z varies from 1 to 10. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0953-4075 1361-6455 |
DOI: | 10.1088/0953-4075/48/17/175002 |