Novel Ansa-Chain Conformation of a Semi-Synthetic Rifamycin Prepared Employing the Alder-Ene Reaction: Crystal Structure and Absolute Stereochemistry
Rifamycins are an extremely important class of antibacterial agents whose action results from the inhibition of DNA-dependent RNA synthesis. A special arrangement of unsubstituted hydroxy groups at C21 and C23, with oxygen atoms at C1 and C8 is essential for activity. Moreover, it is known that the...
Saved in:
Published in | Chemistry an international journal Vol. 3; no. 3; pp. 734 - 743 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Rifamycins are an extremely important class of antibacterial agents whose action results from the inhibition of DNA-dependent RNA synthesis. A special arrangement of unsubstituted hydroxy groups at C21 and C23, with oxygen atoms at C1 and C8 is essential for activity. Moreover, it is known that the antibacterial action of rifamycin is lost if either of the two former hydroxy groups undergo substitution and are no longer free to act in enzyme inhibition. In the present work, we describe the successful use of an Alder-Ene reaction between Rifamycin O, 1 and diethyl azodicarboxylate, yielding 2, which was a targeted introduction of a relatively bulky group close to C21 to protect its hydroxy group. Many related azo diesters were found to react analogously, giving one predominant product in each case. To determine unambiguously the stereochemistry of the Alder-Ene addition process, a crystalline zwitterionic derivative 3 of the diethyl azodicarboxylate adduct 2 was prepared by reductive amination at its spirocyclic centre C4. The adduct, as a mono chloroform solvate, crystallized in the non-centrosymmetric Sohnke orthorhombic space group, P212121. The unique conformation and absolute stereochemistry of 3 revealed through X-ray crystal structure analysis is described. |
---|---|
ISSN: | 2624-8549 2624-8549 |
DOI: | 10.3390/chemistry3030052 |