Three-terminal heterojunction bipolar transistor solar cells with non-ideal effects: Efficiency limit and parametric optimum selection

•Heterojunction bipolar transistor solar cells with non-ideal effects are studied.•Simpler structure and fabrication compared with dual-junction solar cells.•High conversion efficiency can be achieved at low solar concentrations.•Low injection efficiency and working temperature provide better perfor...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 188; pp. 112 - 119
Main Authors Zhang, Xin, Ang, Yee Sin, Ye, Zhuolin, Su, Shanhe, Chen, Jincan, Ang, Lay Kee
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.05.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•Heterojunction bipolar transistor solar cells with non-ideal effects are studied.•Simpler structure and fabrication compared with dual-junction solar cells.•High conversion efficiency can be achieved at low solar concentrations.•Low injection efficiency and working temperature provide better performance.•Paving a route towards the development of low-cost high-performance solar cells. Without fabricating intermediate tunnel junctions or wafer bonding schemes for interconnecting the subcells, heterojunction bipolar transistor solar cells offer a promising new route in solar energy conversion. In this work, an improved theory for the three-terminal heterojunction bipolar transistor solar cell is presented with inclusion of non-ideal effects missing from the previous treatment, namely the non-radiative recombination and the thermal conduction losses that are inevitably present in realistic devices. Following detailed balance theory, the revised analytical formula for the cell conversion efficiency is derived, and the maximum efficiencies under different conditions are further calculated. Under the condition of 100 sun irradiance and 50% injection efficiency, a Gallium arsenide/Gallium antimonide-based solar cell operating at 465 K yields a maximum efficiency of 46.4%. Moreover, the effects of solar concentration, injection efficiency, and other key parameters on the cell performance are analyzed, and, consequently, optimal operating conditions and limiting factors on the conversion efficiency are determined. Simulation results show that such a solar cell operating with low injection efficiency under moderate concentration factor and low cell temperature can significantly boost its conversion performance. This work provides new physical insights for optimal designs, thus paving a route towards the development of low-cost high-performance solar cells.
ISSN:0196-8904
1879-2227
DOI:10.1016/j.enconman.2019.03.034