Probabilistic opposition-based particle swarm optimization with velocity clamping
A probabilistic opposition-based Particle Swarm Optimization algorithm with Velocity Clamping and inertia weights (OvcPSO) is designed for function optimization—to accelerate the convergence speed and to optimize solution’s accuracy on standard benchmark functions. In this work, probabilistic opposi...
Saved in:
Published in | Knowledge and information systems Vol. 39; no. 3; pp. 703 - 737 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2014
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A probabilistic opposition-based Particle Swarm Optimization algorithm with Velocity Clamping and inertia weights (OvcPSO) is designed for function optimization—to accelerate the convergence speed and to optimize solution’s accuracy on standard benchmark functions. In this work, probabilistic opposition-based learning for particles is incorporated with PSO to enhance the convergence rate—it uses velocity clamping and inertia weights to control the position, speed and direction of particles to avoid premature convergence. A comprehensive set of 58 complex benchmark functions including a wide range of dimensions have been used for experimental verification. It is evident from the results that OvcPSO can deal with complex optimization problems effectively and efficiently. A series of experiments have been performed to investigate the influence of population size and dimensions upon the performance of different PSO variants. It also outperforms FDR-PSO, CLPSO, FIPS, CPSO-H and GOPSO on various benchmark functions. Last but not the least, OvcPSO has also been compared with opposition-based differential evolution (ODE); it outperforms ODE on lower swarm population and higher-dimensional functions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0219-1377 0219-3116 |
DOI: | 10.1007/s10115-013-0624-z |