Simulation of solidification microstructure of Fe-6.5%Si alloy using cellular automaton-finite element method
3D microstructures of Fe–6.5%Si (mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton (CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and so...
Saved in:
Published in | Journal of Central South University Vol. 23; no. 9; pp. 2156 - 2164 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Changsha
Central South University
01.09.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-2899 2227-5223 |
DOI | 10.1007/s11771-016-3272-0 |
Cover
Loading…
Summary: | 3D microstructures of Fe–6.5%Si (mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton (CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition (CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2095-2899 2227-5223 |
DOI: | 10.1007/s11771-016-3272-0 |