Interactive parameter space design for robust performance of MISO control systems

This paper presents a method for the design of nonconservative low-order controllers achieving robust performance in the case of multi-input single-output parallel structure plants subject to unstructured uncertainty. The first step is the analytical generation of gain-phase controller bounds, as in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 45; no. 10; pp. 1917 - 1924
Main Authors Besson, V., Shenton, A.T.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a method for the design of nonconservative low-order controllers achieving robust performance in the case of multi-input single-output parallel structure plants subject to unstructured uncertainty. The first step is the analytical generation of gain-phase controller bounds, as in quantitative feedback theory (QFT). Then, to avoid the difficult step of QFT loop shaping, which often produces high-order controllers, these bounds are translated into the controller parameter space where the iterative design of low fixed order controllers takes place. This, as well as the design transparency offered by this technique, constitutes appreciable advantages over the other popular robust performance design method of /spl mu/-synthesis. Other important features are the fact that no extra conservatism is introduced by the method presented and the fact that the method is directly compatible with a sequential loop closing strategy. Finally, the direct search optimization of any additional secondary criteria is possible.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2000.880999