Elevated levels of perfluoroalkyl substances in estuarine sediments of Charleston, SC

Urban areas are sources of perfluoroalkyl substances (PFASs) in the environment, although little is known about specific point sources and distribution of PFASs. Sentinel species, like bottlenose dolphins, are important indicators of environmental perturbations. The high PFAS levels found in dolphin...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 521-522; pp. 79 - 89
Main Authors White, Natasha D, Balthis, Len, Kannan, Kurunthachalam, De Silva, Amila O, Wu, Qian, French, Katherine M, Daugomah, James, Spencer, Christine, Fair, Patricia A
Format Journal Article
LanguageEnglish
Published Netherlands 15.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Urban areas are sources of perfluoroalkyl substances (PFASs) in the environment, although little is known about specific point sources and distribution of PFASs. Sentinel species, like bottlenose dolphins, are important indicators of environmental perturbations. The high PFAS levels found in dolphins inhabiting Charleston, South Carolina prompted investigation of these chemicals in this area. This study provides further evidence on the extent of contamination and potential sources of PFASs. In this study, concentrations of 11 PFASs measured in estuarine sediments collected in 2012 from the Charleston Harbor and the Ashley and Cooper Rivers (n=36) in South Carolina revealed higher levels than those reported in any other U.S. urban areas. Detectable levels were found in all sample locations with mean total PFAS concentrations of 3.79ngg(-1) (range 0.22 to 19.2ngg(-1) d.w.). Dominant compounds were perfluorooctane sulfonate (PFOS) (mean 1.52ngg(-1); range 0.09-7.37ngg(-1) d.w.), followed by perfluorodecanoate (PFDA) (mean 0.83ngg(-1); range 0.06-4.76ngg(-1) d.w.) and perfluorooctanoate (PFOA) (mean 0.42ngg(-1); range 0.02-2.52ngg(-1) d.w.). PFOS levels in sediments at 19 of 36 sites (representing 52% of the study area) exceeded the published global median PFOS sediment concentration of 0.54ngg(-1).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2015.03.078