The Effect of Ni2+ Ions Substitution on Structural, Morphological, and Optical Properties in CoCr2O4 Matrix as Pigments in Ceramic Glazes

The structural, morphological, and optical properties of Ni2+ ions substitution in CoCr2O4 matrix as ceramic pigments were investigated. The thermal decomposition of the dried gel was performed aiming to understand the mass changes during annealing. The X-ray diffraction (XRD) studies reveal a spine...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 24; p. 8713
Main Authors Goga, Firuta, Bortnic, Rares Adrian, Avram, Alexandra, Zagrai, Mioara, Barbu Tudoran, Lucian, Mereu, Raluca Anca
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 07.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The structural, morphological, and optical properties of Ni2+ ions substitution in CoCr2O4 matrix as ceramic pigments were investigated. The thermal decomposition of the dried gel was performed aiming to understand the mass changes during annealing. The X-ray diffraction (XRD) studies reveal a spinel-type Face–Centered Cubic structure and a secondary Cr2O3 phase when x ≤ 0.75 and a Body–Centered Tetragonal structure when x = 1. Fourier Transform Infrared Spectroscopy (FT–IR) indicated two strong absorption bands corresponding to the metal–oxygen stretching from tetrahedral and octahedral sites, characteristic of spinel structure. Ultraviolet–Visible (UV–Vis) spectra exhibited the electronic transitions of the Cr2+ Cr3+ and Ni2+ ions. From the UV–Vis data, the CIE color coordinates, (x, y) of the pigments were evaluated. The morphology was examined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) showing the agglomeration behavior of the particles. The stability, coloring properties and potential ceramic applications of studied pigments were tested by their incorporation in matte and glossy tile glazes followed by the application of obtained glazes on ceramic tiles. This study highlights the change in pigment color (from turquoise to a yellowish green) with Ni2+ ions substitution in the CoCr2O4 spinel matrix.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15248713