A multi-phase correlation search framework for mining non-taxonomic relations from unstructured text

Over the last decade, ontology engineering has been pursued by “learning” the ontology from domain-specific electronic documents. Most of the research works are focused on extraction of concepts and taxonomic relations. The extraction of non-taxonomic relations is often neglected and not well resear...

Full description

Saved in:
Bibliographic Details
Published inKnowledge and information systems Vol. 38; no. 3; pp. 641 - 667
Main Authors Wong, Mei Kuan, Abidi, Syed Sibte Raza, Jonsen, Ian D.
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Over the last decade, ontology engineering has been pursued by “learning” the ontology from domain-specific electronic documents. Most of the research works are focused on extraction of concepts and taxonomic relations. The extraction of non-taxonomic relations is often neglected and not well researched. In this paper, we present a multi-phase correlation search framework to extract non-taxonomic relations from unstructured text. Our framework addresses the two main problems in any non-taxonomic relations extraction: (a) the discovery of non-taxonomic relations and (b) the labelling of non-taxonomic relations. First, our framework is capable of extracting correlated concepts beyond ordinary search window size of a single sentence. Interesting correlations are then filtered using association rule mining with lift interestingness measure. Next, our framework distinguishes non-taxonomic concept pairs from taxonomic concept pairs based on existing domain ontology. Finally, our framework features the usage of domain related verbs as labels for the non-taxonomic relations. Our proposed framework has been tested with the marine biology domain. Results have been validated by domain experts showing reliable results as well as demonstrate significant improvement over traditional association rule approach in search of non-taxonomic relations from unstructured text.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0219-1377
0219-3116
DOI:10.1007/s10115-012-0593-7