Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel
Hot-dip aluminizing(HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 25; no. 2; pp. 190 - 198 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
University of Science and Technology Beijing
01.02.2018
Springer Nature B.V Department of Metallurgical & Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, India |
Subjects | |
Online Access | Get full text |
ISSN | 1674-4799 1869-103X |
DOI | 10.1007/s12613-018-1562-2 |
Cover
Loading…
Summary: | Hot-dip aluminizing(HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions: an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al_7Cr and Al_3Fe dispersed in an Al matrix. Twinning was observed in both the Al_7Cr and the Al_3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe_2Al_5, Al_7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed. |
---|---|
Bibliography: | Hot-dip aluminizing(HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions: an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al_7Cr and Al_3Fe dispersed in an Al matrix. Twinning was observed in both the Al_7Cr and the Al_3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe_2Al_5, Al_7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed. 11-5787/TF hot-dip aluminizing aluminide layer intermetallic phases microstructural features stainless steel ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1674-4799 1869-103X |
DOI: | 10.1007/s12613-018-1562-2 |