RF acoustic microsystems based on suspended lithium niobate thin films: advances and outlook

Saved in:
Bibliographic Details
Published inJournal of micromechanics and microengineering Vol. 31; no. 11; pp. 114001 - 114013
Main Authors Lu, Ruochen, Gong, Songbin
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2021
Subjects
Online AccessGet full text
ISSN0960-1317
1361-6439
DOI10.1088/1361-6439/ac288f

Cover

Loading…
Author Gong, Songbin
Lu, Ruochen
Author_xml – sequence: 1
  givenname: Ruochen
  orcidid: 0000-0003-0025-3924
  surname: Lu
  fullname: Lu, Ruochen
  organization: The University of Texas at Austin Department of Electrical and Computer Engineering, Austin, Texas, United States of America
– sequence: 2
  givenname: Songbin
  surname: Gong
  fullname: Gong, Songbin
  organization: University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering, Champaign, Illinois, United States of America
BookMark eNp9kE1LxDAQQIOs4O7q3WOOHqybbNo09SaLq8KCIHoTQpoPzNokpUmF_fe2VDyICgPDDPOGmbcAMx-8BuAcoyuMGFthQnFGc1KthFwzZo7A_Ls1A3NUUZRhgssTsIhxjxDGDLM5eH3aQiFDH5OV0FnZhXiISbsIaxG1gsHD2MdWezUUjU1vtnfQ21CLpOFQeWhs4-I1FOpDeKkjFH6g-tSE8H4Kjo1ooj77ykvwsr193txnu8e7h83NLpOkrFJWGUMQFYRIViBUV0Utc4qZKWmtWZGXJStobdCaVoopKZQk2pg8NxQVimJEyRLQae94fuy04dImkWzwqRO24Rjx0REfhfBRCJ8cDSD6AbaddaI7_IdcTIgNLd-HvvPDZ3zvHCeY4zHyQS5v1Th6-cvon5s_AYZ9iE4
CODEN JMMIEZ
CitedBy_id crossref_primary_10_1109_TUFFC_2023_3303123
crossref_primary_10_1364_OL_515879
crossref_primary_10_1109_LMWT_2024_3368354
crossref_primary_10_1109_TMTT_2022_3194723
crossref_primary_10_1063_5_0222394
crossref_primary_10_1109_JMEMS_2023_3321284
crossref_primary_10_1063_5_0190058
crossref_primary_10_1063_5_0106428
crossref_primary_10_1088_1361_6439_ac9289
crossref_primary_10_1109_LED_2022_3230911
crossref_primary_10_3390_mi14071341
crossref_primary_10_1063_5_0094364
crossref_primary_10_1063_5_0204157
crossref_primary_10_1109_JMEMS_2023_3262021
crossref_primary_10_1002_adem_202201837
crossref_primary_10_1109_JMEMS_2024_3431576
crossref_primary_10_1109_LED_2022_3152908
crossref_primary_10_1109_JMEMS_2021_3114627
crossref_primary_10_1109_MMM_2022_3203949
crossref_primary_10_1103_PhysRevApplied_18_054078
crossref_primary_10_1109_LMWT_2023_3301229
crossref_primary_10_3390_mi15040477
crossref_primary_10_1088_1361_6439_ad2f49
crossref_primary_10_1109_LED_2022_3175572
crossref_primary_10_1109_JMEMS_2023_3314666
crossref_primary_10_1002_admi_202300240
crossref_primary_10_1109_TUFFC_2022_3152010
crossref_primary_10_35848_1347_4065_ad1e03
crossref_primary_10_35848_1347_4065_acbc2b
crossref_primary_10_1038_s41598_024_57168_x
crossref_primary_10_1103_PhysRevApplied_23_024054
crossref_primary_10_1109_ACCESS_2024_3380370
crossref_primary_10_1109_JMEMS_2022_3204449
crossref_primary_10_1038_s44310_024_00052_3
crossref_primary_10_1109_TED_2023_3297561
crossref_primary_10_1002_admi_202202446
crossref_primary_10_1109_JMEMS_2024_3472615
crossref_primary_10_1038_s41928_022_00910_y
Cites_doi 10.1109/TMTT.2020.3022942
10.1109/58.896145
10.1155/2013/459767
10.1109/TMTT.2018.2883107
10.1109/TMTT.2018.2890661
10.1364/PRJ.7.001003
10.1109/TUFFC.2020.3049084
10.1109/TED.2013.2281734
10.1109/JMEMS.2021.3062819
10.1109/JMEMS.2020.3007590
10.1063/1.5126428
10.1002/pssa.201000060
10.1364/OPTICA.6.001498
10.1109/TMTT.2012.2228671
10.1109/TUFFC.2019.2916259
10.1109/TMTT.2019.2949808
10.7567/JJAP.52.07HD03
10.1109/TUFFC.2020.2989623
10.1109/MEMSYS.2018.8346485
10.1109/JMEMS.2014.2384916
10.1049/el.2019.1658
10.1109/TMTT.2021.3074918
10.1109/MEMS46641.2020.9056190
10.1109/JMEMS.2019.2961976
10.1109/IUS52206.2021.9593653
10.1109/LED.2020.3030797
10.1049/el.2018.7297
10.1109/IMS19712.2021.9574959
10.1109/JMEMS.2020.2967784
10.1063/5.0034909
10.1109/TUFFC.2020.3048929
10.1364/OE.27.009794
10.1111/j.1551-2916.2012.05155.x
10.1088/1361-6463/aaee59
10.1109/MMM.2015.2431236
10.1109/JMEMS.2018.2847310
10.1007/s11664-001-0067-2
10.1109/TMTT.2019.2895577
10.1109/TUFFC.2020.3035123
10.1109/JMEMS.2019.2934126
10.1016/j.sna.2014.01.033
10.1063/1.5143550
10.1109/TUFFC.2020.2972293
10.1109/EFTF/IFCS52194.2021.9604327
10.1109/TUFFC.2020.3011624
10.1109/TUFFC.889
10.35848/1347-4065/ab7861
10.1109/JMEMS.2018.2864177
10.1109/JMEMS.2014.2312888
10.1109/JMEMS.2017.2750176
10.1063/1.1660528
10.1063/1.3258496
10.1088/1361-6439/ab5b7b
10.1109/TMTT.1985.1132981
10.1109/LED.2020.3007062
10.1109/JMEMS.2020.2965519
10.1109/JMEMS.2020.3026167
10.1109/JMEMS.2021.3092724
10.1109/JMEMS.2020.3026547
10.1109/JMEMS.2020.2982775
10.1109/LED.2021.3051298
10.1364/OPTICA.6.000845
10.1364/AOP.411024
10.1109/FCS.2019.8856007
10.1109/JMEMS.2019.2922935
10.31438/trf.hh2014.75
10.1109/OJPEL.2021.3067020
10.1109/JMEMS.2020.2965957
10.1002/admi.201600998
10.1109/TMTT.2019.2900246
10.1088/1361-6463/ab1b04
10.1109/TUFFC.2020.2984176
10.1109/JMW.2021.3064825
10.1109/TUFFC.2019.2943355
10.1063/1.1657074
10.1364/OPTICA.413401
10.7567/1347-4065/ab14d3
10.1103/PhysRevApplied.13.024069
10.1002/adma.200502364
10.1063/1.5108724
10.1109/TUFFC.2010.1722
10.1109/TMTT.2020.3006294
10.1121/1.385588
10.1109/MMM.2015.2429513
10.7567/JJAP.53.07KD03
10.1109/JMEMS.2019.2892708
10.1109/TMTT.2020.3027694
10.1109/MEMSYS.2018.8346657
10.1109/TMTT.1974.1128241
10.1109/JMEMS.2021.3062344
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
Copyright_xml – notice: 2021 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6439/ac288f
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6439
ExternalDocumentID 10_1088_1361_6439_ac288f
jmmac288f
GroupedDBID -~X
02O
1JI
1PV
1WK
29L
4.4
5B3
5GY
5PX
5VS
5ZH
5ZI
7.M
7.Q
AAGCD
AAGCF
AAHTB
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ACMRT
AEFHF
AENEX
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
G8K
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KC5
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
S3P
SY9
T37
TN5
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c379t-9ff306a33c8500b95bc4618f76be85477856bf0269d8dcadc3eff44f605d61063
IEDL.DBID IOP
ISSN 0960-1317
IngestDate Thu Apr 24 23:10:51 EDT 2025
Tue Jul 01 02:48:19 EDT 2025
Wed Aug 21 03:34:51 EDT 2024
Wed Jun 07 11:18:59 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-9ff306a33c8500b95bc4618f76be85477856bf0269d8dcadc3eff44f605d61063
Notes JMM-105424.R1
ORCID 0000-0003-0025-3924
PageCount 13
ParticipantIDs crossref_primary_10_1088_1361_6439_ac288f
crossref_citationtrail_10_1088_1361_6439_ac288f
iop_journals_10_1088_1361_6439_ac288f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of micromechanics and microengineering
PublicationTitleAbbrev JMM
PublicationTitleAlternate J. Micromech. Microeng
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Cai (jmmac288fbib99) 2019; 27
Bousquet (jmmac288fbib48) 2020; vol 2020-September
Lu (jmmac288fbib108) 2021
Gong (jmmac288fbib14) 2013; 60
Pijolat (jmmac288fbib62) 2008
Gao (jmmac288fbib127) 2021; 68
Ghosh (jmmac288fbib131) 2018
Pirro (jmmac288fbib75) 2020
Lu (jmmac288fbib94) 2019; 67
Shao (jmmac288fbib96) 2020; Part F183
Tanaka (jmmac288fbib43) 2020
Lu (jmmac288fbib35) 2020; 3
Lu (jmmac288fbib118) 2021; 30
Lu (jmmac288fbib85) 2018
Kourani (jmmac288fbib90) 2021; 68
Manzaneque (jmmac288fbib77) 2017
Lu (jmmac288fbib133) 2020; 67
Colombo (jmmac288fbib79) 2020; 67
Sarabalis (jmmac288fbib140) 2021; 8
Shao (jmmac288fbib97) 2019; 6
Park (jmmac288fbib64) 2006; 18
Jiang (jmmac288fbib100) 2019; 6
Malocha (jmmac288fbib136) 2020; 67
Wang (jmmac288fbib13) 2015; 24
Wollack (jmmac288fbib141) 2021; 118
Lu (jmmac288fbib126) 2020; 67
Yang (jmmac288fbib109) 2017
Siebert (jmmac288fbib122) 1986
Gong (jmmac288fbib16) 2013; 61
Gallagher (jmmac288fbib130) 2010
Chen (jmmac288fbib31) 2019
Yandrapalli (jmmac288fbib38) 2021
Tzu-Hsuan (jmmac288fbib73) 2021; 31
Simeoni (jmmac288fbib92) 2021; 30
Hartmann (jmmac288fbib101) 1989
Aspar (jmmac288fbib63) 2001; 30
Kourani (jmmac288fbib134) 2018
Song (jmmac288fbib27) 2015
Iwamoto (jmmac288fbib125) 2018
Colombo (jmmac288fbib15) 2018; 27
Olsson (jmmac288fbib23) 2014; 209
Kadota (jmmac288fbib46) 2009
Manzaneque (jmmac288fbib81) 2019; 67
Ghosh (jmmac288fbib95) 2020
Bhaskar (jmmac288fbib135) 2018; 52
Li (jmmac288fbib88) 2020; 29
Fang (jmmac288fbib34) 2018
Ruby (jmmac288fbib3) 2015; 16
Su (jmmac288fbib72) 2021; 42
Smith (jmmac288fbib115) 2012; 95
Wang (jmmac288fbib21) 2013
Matsumoto (jmmac288fbib52) 2020; 59
Ghosh (jmmac288fbib137) 2019
Braun (jmmac288fbib54) 2021; 2
Kadota (jmmac288fbib41) 2011; 208
Hashimoto (jmmac288fbib6) 2013
Kadota (jmmac288fbib30) 2014; 53
Lu (jmmac288fbib67) 2021; 69
Sarabalis (jmmac288fbib86) 2020; 127
Yang (jmmac288fbib36) 2020; 29
Kadota (jmmac288fbib68) 2016
Foster (jmmac288fbib60) 1969; 40
Lu (jmmac288fbib83) 2020; 67
Dahmani (jmmac288fbib87) 2020; 13
Ruby (jmmac288fbib9) 2001
Wang (jmmac288fbib20) 2016
Hassanien (jmmac288fbib113) 2021
Solal (jmmac288fbib74) 2002; vol 1
Segovia-fernandez (jmmac288fbib121) 2014; 24
Lu (jmmac288fbib82) 2019; 66
Kimura (jmmac288fbib69) 2019; 67
Lu (jmmac288fbib124) 2021
Jackson (jmmac288fbib4) 1985; 33
Kuznetsova (jmmac288fbib12) 2001; 48
Moulet (jmmac288fbib65) 2008
Bousquet (jmmac288fbib120) 2019; vol 2019-October
Turner (jmmac288fbib37) 2019; 55
Warder (jmmac288fbib5) 2015; 16
Faizan (jmmac288fbib33) 2021; 30
Gong (jmmac288fbib28) 2014
Kochhar (jmmac288fbib103) 2017
Zhu (jmmac288fbib139) 2021
Gong (jmmac288fbib107) 2012; vol 1
Kadota (jmmac288fbib110) 2019; 58
Colombo (jmmac288fbib80) 2020
Cai (jmmac288fbib98) 2019; 7
Shi (jmmac288fbib24) 2014; 23
Baron (jmmac288fbib53) 2013; 2013
Lakin (jmmac288fbib102) 1974; 22
Lu (jmmac288fbib84) 2021; 69
Kimura (jmmac288fbib70) 2013; 52
Mansoorzare (jmmac288fbib93) 2020; 41
Kadota (jmmac288fbib26) 2012
Bajak (jmmac288fbib117) 1981; 69
Zhang (jmmac288fbib66) 2020; 68
Schermer (jmmac288fbib116) 2019; 67
Colombo (jmmac288fbib18) 2020; 29
Bousquet (jmmac288fbib47) 2019
Bartasyte (jmmac288fbib61) 2017; 4
Hashimoto (jmmac288fbib8) 2009
Chandrahalim (jmmac288fbib114) 2009
(jmmac288fbib10) 1988
Li (jmmac288fbib25) 2019; 28
Yang (jmmac288fbib57) 2018
Kochhar (jmmac288fbib49) 2018
Osugi (jmmac288fbib51) 2007
Lu (jmmac288fbib91) 2020; 29
Yang (jmmac288fbib39) 2019; vol 2019-January
Kourani (jmmac288fbib89) 2020; 67
Vidal-Álvarez (jmmac288fbib78) 2020; 29
Delsing (jmmac288fbib2) 2019; 52
Yang (jmmac288fbib59) 2019
Wang (jmmac288fbib19) 2012
Plessky (jmmac288fbib40) 2018; 55
Olsson (jmmac288fbib22) 2014
Pijolat (jmmac288fbib50) 2009; 95
Lu (jmmac288fbib111) 2020; 68
Ruby (jmmac288fbib7) 2004
Kimura (jmmac288fbib71) 2019
Lu (jmmac288fbib112) 2020
Smith (jmmac288fbib105) 1971; 42
Lu (jmmac288fbib76) 2018; 27
Lu (jmmac288fbib32) 2018
Plessky (jmmac288fbib42) 2019
Bai (jmmac288fbib55) 2020; 10
Kochhar (jmmac288fbib29) 2020; 29
Kadota (jmmac288fbib44) 2010; 57
Yang (jmmac288fbib56) 2020; 68
Yang (jmmac288fbib128) 2019; 28
Yang (jmmac288fbib45) 2021; 68
Manzaneque (jmmac288fbib132) 2017; 26
Lu (jmmac288fbib58) 2020; 29
Lu (jmmac288fbib11) 2019; 28
Faizan (jmmac288fbib17) 2019; 30
Hashimoto (jmmac288fbib106) 2000
Yang (jmmac288fbib119) 2021; 68
Auld (jmmac288fbib104) 1990
Kuznetsova (jmmac288fbib123) 2008; 55
Hackett (jmmac288fbib138) 2019; 114
Gong (jmmac288fbib1); 1
Hsu (jmmac288fbib129) 2020; 41
References_xml – start-page: 201
  year: 2008
  ident: jmmac288fbib62
  article-title: Large Q × f product for HBAR using Smart CutTM transfer of LiNbO3 thin layers onto LiNbO3 substrate
– volume: 69
  start-page: 541
  year: 2021
  ident: jmmac288fbib84
  article-title: Low-loss 5 GHz first-order antisymmetric mode acoustic delay lines in thin-film lithium niobate
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2020.3022942
– volume: 48
  start-page: 322
  year: 2001
  ident: jmmac288fbib12
  article-title: Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.896145
– start-page: 1
  year: 2020
  ident: jmmac288fbib80
  article-title: Zero power X-cut LiNbO3 MEMS-based radio frequency rectifier
– start-page: 747
  year: 2018
  ident: jmmac288fbib32
  article-title: Exploiting parallelism in resonators for large voltage gain in low power wake up radio front ends
– volume: 2013
  year: 2013
  ident: jmmac288fbib53
  article-title: Wideband lithium niobate FBAR filters
  publication-title: Int. J. Microw. Sci. Technol.
  doi: 10.1155/2013/459767
– volume: 67
  start-page: 1078
  year: 2019
  ident: jmmac288fbib116
  article-title: Millimeter-wave dielectric properties of highly refractive single crystals characterized by waveguide cavity resonance
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2018.2883107
– volume: 67
  start-page: 915
  year: 2019
  ident: jmmac288fbib69
  article-title: Comparative study of acoustic wave devices using thin piezoelectric plates in the 3–5 GHz range
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2018.2890661
– year: 2009
  ident: jmmac288fbib8
– volume: 7
  start-page: 1003
  year: 2019
  ident: jmmac288fbib98
  article-title: Acousto-optical modulation of thin film lithium niobate waveguide devices
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.7.001003
– volume: 68
  start-page: 1930
  year: 2021
  ident: jmmac288fbib45
  article-title: Lateral spurious mode suppression in lithium niobate A1 resonators
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.3049084
– volume: 60
  start-page: 3888
  year: 2013
  ident: jmmac288fbib14
  article-title: Figure-of-merit enhancement for laterally vibrating lithium niobate mems resonators
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2013.2281734
– volume: 30
  start-page: 369
  year: 2021
  ident: jmmac288fbib33
  article-title: Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2021.3062819
– volume: vol 2019-January
  start-page: 875
  year: 2019
  ident: jmmac288fbib39
  article-title: A 1.65 GHz lithium niobate A1 resonator with electromechanical coupling of 14% and Q of 3112
– volume: 29
  start-page: 1332
  year: 2020
  ident: jmmac288fbib58
  article-title: Enabling higher order lamb wave acoustic devices with complementarily oriented piezoelectric thin films
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.3007590
– volume: 127
  year: 2020
  ident: jmmac288fbib86
  article-title: S-band delay lines in suspended lithium niobate
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5126428
– volume: 208
  start-page: 1068
  year: 2011
  ident: jmmac288fbib41
  article-title: LiNbO3 thin film for A1 mode of Lamb wave resonators
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
  doi: 10.1002/pssa.201000060
– volume: 6
  start-page: 1498
  year: 2019
  ident: jmmac288fbib97
  article-title: Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators
  publication-title: Optica
  doi: 10.1364/OPTICA.6.001498
– start-page: 813
  year: 2001
  ident: jmmac288fbib9
  article-title: Thin film bulk wave acoustic resonators (FBAR) for wireless applications
– start-page: 333
  year: 2009
  ident: jmmac288fbib46
  article-title: 4.5 GHz Lamb wave device composed of LiNbO3 thin film
– start-page: 84
  year: 2019
  ident: jmmac288fbib47
  article-title: Single-mode high frequency LiNbO3 film bulk acoustic resonator
– volume: 61
  start-page: 403
  year: 2013
  ident: jmmac288fbib16
  article-title: Design and analysis of lithium–niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2012.2228671
– year: 1986
  ident: jmmac288fbib122
– volume: 66
  start-page: 1373
  year: 2019
  ident: jmmac288fbib82
  article-title: Gigahertz low-loss and wide-band S0 mode lithium niobate acoustic delay lines
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2916259
– volume: vol 1
  start-page: 2
  year: 2012
  ident: jmmac288fbib107
  article-title: High electromechanical coupling MEMS resonators at 530 MHz using ion sliced X-cut LiNbO3 thin film
– volume: 68
  start-page: 573
  year: 2020
  ident: jmmac288fbib111
  article-title: 5 GHz antisymmetric mode acoustic delay lines in lithium niobate thin film
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2019.2949808
– volume: 52
  start-page: 07HD03
  year: 2013
  ident: jmmac288fbib70
  article-title: S0 mode lamb wave resonators using LiNbO3 thin plate on acoustic multilayer reflector
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.07HD03
– year: 2000
  ident: jmmac288fbib106
– year: 2013
  ident: jmmac288fbib6
– volume: 67
  start-page: 1854
  year: 2020
  ident: jmmac288fbib89
  article-title: A wideband oscillator exploiting multiple resonances in lithium niobate MEMS resonator
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2989623
– year: 2018
  ident: jmmac288fbib49
  article-title: Top electrode shaping for harnessing high coupling in thickness shear mode resonators in Y-cut lithium niobate thin films
  doi: 10.1109/MEMSYS.2018.8346485
– start-page: p 5
  year: 2004
  ident: jmmac288fbib7
  article-title: FBAR—from technology development to production
– volume: 24
  start-page: 300
  year: 2015
  ident: jmmac288fbib13
  article-title: Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2384916
– volume: 68
  start-page: 1930
  year: 2021
  ident: jmmac288fbib119
  article-title: Lateral spurious mode suppression in lithium niobate A1 resonators
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.3049084
– volume: 55
  start-page: 942
  year: 2019
  ident: jmmac288fbib37
  article-title: 5 GHz band n79 wideband microacoustic filter using thin lithium niobate membrane
  publication-title: Electron. Lett.
  doi: 10.1049/el.2019.1658
– start-page: 1
  year: 2018
  ident: jmmac288fbib131
  article-title: SAW correlators in LiNbO3 and GaN on sapphire
– volume: 69
  start-page: 3246
  year: 2021
  ident: jmmac288fbib67
  article-title: GHz low-loss and high power handling acoustic delay lines using thin-film lithium niobate on sapphire
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2021.3074918
– start-page: 679
  year: 2016
  ident: jmmac288fbib20
  article-title: Multi-frequency LiNbO3 Lamb wave resonators with <3 Ω impedance
– year: 2020
  ident: jmmac288fbib112
  article-title: 8.5 GHz and 11.5 GHz acoustic delay lines using higher-order Lamb modes in lithium niobate thin film
  doi: 10.1109/MEMS46641.2020.9056190
– start-page: 1
  year: 2018
  ident: jmmac288fbib57
  article-title: Toward Ka band acoustics: lithium niobate asymmetrical mode piezoelectric MEMS resonators
– volume: vol 1
  start-page: 131
  year: 2002
  ident: jmmac288fbib74
  article-title: Oriented lithium niobate layers transferred on 4″ (100) silicon wafer for RF SAW devices
– year: 2019
  ident: jmmac288fbib59
  article-title: Scaling acoustic filters towards 5G
– volume: 29
  start-page: 129
  year: 2020
  ident: jmmac288fbib88
  article-title: Low phase noise RF oscillators based on thin-film lithium niobate acoustic delay lines
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2019.2961976
– year: 2021
  ident: jmmac288fbib124
  article-title: Power flow angles of GHz propagating acoustic waves in thin-film lithium niobate
  doi: 10.1109/IUS52206.2021.9593653
– volume: 41
  start-page: 1825
  year: 2020
  ident: jmmac288fbib129
  article-title: Large coupling acoustic wave resonators based on LiNbO3/SiO2/Si functional substrate
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2020.3030797
– start-page: 303
  year: 2012
  ident: jmmac288fbib19
  article-title: Thin-film lithium niobate contour-mode resonators
– volume: 55
  start-page: 98
  year: 2018
  ident: jmmac288fbib40
  article-title: 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate
  publication-title: Electron. Lett.
  doi: 10.1049/el.2018.7297
– year: 2021
  ident: jmmac288fbib113
  article-title: Near zero TCF acoustic resonator with high electromechanical coupling of 13.5% at 3.5 GHz
  doi: 10.1109/IMS19712.2021.9574959
– volume: 29
  start-page: 135
  year: 2020
  ident: jmmac288fbib36
  article-title: High Q antisymmetric mode lithium niobate MEMS resonators with spurious mitigation
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.2967784
– volume: 118
  year: 2021
  ident: jmmac288fbib141
  article-title: Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0034909
– volume: 68
  start-page: 1994
  year: 2021
  ident: jmmac288fbib90
  article-title: An L- and X-band dual frequency synthesizer utilizing lithium niobate RF-MEMS and open loop frequency dividers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.3048929
– volume: 27
  start-page: 9794
  year: 2019
  ident: jmmac288fbib99
  article-title: Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications
  publication-title: Opt. Express
  doi: 10.1364/OE.27.009794
– volume: 95
  start-page: 1777
  year: 2012
  ident: jmmac288fbib115
  article-title: PZT-based piezoelectric MEMS technology
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2012.05155.x
– volume: 52
  start-page: 05LT01
  year: 2018
  ident: jmmac288fbib135
  article-title: Silicon acoustoelectronics with thin film lithium niobate
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aaee59
– start-page: 942
  year: 2017
  ident: jmmac288fbib109
  article-title: 5 GHz lithium niobate MEMS resonators with high FoM of 153
– volume: 16
  start-page: 60
  year: 2015
  ident: jmmac288fbib5
  article-title: Golden age for filter design: innovative and proven approaches for acoustic filter, duplexer, and multiplexer design
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMM.2015.2431236
– volume: 27
  start-page: 602
  year: 2018
  ident: jmmac288fbib15
  article-title: X-cut lithium niobate laterally vibrating MEMS resonator with figure of merit of 1560
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2847310
– volume: 30
  start-page: 834
  year: 2001
  ident: jmmac288fbib63
  article-title: The generic nature of the Smart-Cut® process for thin film transfer
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-001-0067-2
– volume: 67
  start-page: 1516
  year: 2019
  ident: jmmac288fbib94
  article-title: A radio frequency nonreciprocal network based on switched acoustic delay lines
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2019.2895577
– start-page: 79
  year: 1989
  ident: jmmac288fbib101
  article-title: Overview of design challenges for single phase unidirectional SAW filters
– year: 1990
  ident: jmmac288fbib104
– volume: 68
  start-page: 1408
  year: 2021
  ident: jmmac288fbib127
  article-title: Wideband hybrid monolithic lithium niobate acoustic filter in the K-band
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.3035123
– volume: 28
  start-page: 799
  year: 2019
  ident: jmmac288fbib25
  article-title: Temperature stability analysis of thin-film lithium niobate SH0 plate wave resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2019.2934126
– start-page: 1
  year: 2020
  ident: jmmac288fbib75
  article-title: X-cut LiNbO3 coupled resonators for narrow-band filtering applications
– start-page: 567
  year: 2018
  ident: jmmac288fbib134
  article-title: A 175 MHz 72 μW voltage controlled oscillator with 1.4% tuning range based on lithium niobate MEMS resonator and 65 nm CMOS
– start-page: 535
  year: 2019
  ident: jmmac288fbib137
  article-title: FDSOI on lithium niobate using Al2O3 wafer-bonding for acoustoelectric RF microdevices
– volume: 209
  start-page: 183
  year: 2014
  ident: jmmac288fbib23
  article-title: A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2014.01.033
– volume: 10
  year: 2020
  ident: jmmac288fbib55
  article-title: The thin film bulk acoustic wave resonator based on single-crystalline 43° Y-cut lithium niobate thin films
  publication-title: AIP Adv.
  doi: 10.1063/1.5143550
– volume: 31
  year: 2021
  ident: jmmac288fbib73
  article-title: Thin-film lithium niobate-on-insulator (LNOI) shear horizontal surface acoustic wave resonators
  publication-title: J. Micromech. Microeng.
– volume: 67
  start-page: 1392
  year: 2020
  ident: jmmac288fbib79
  article-title: High figure of merit X-cut lithium niobate MEMS resonators operating around 50 MHz for large passive voltage amplification in radio frequency applications
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2972293
– start-page: 15
  year: 2015
  ident: jmmac288fbib27
  article-title: Spurious mode suppression in SH0 lithium niobate laterally vibrating MEMS resonators
– year: 2021
  ident: jmmac288fbib108
  article-title: A 15.8 GHz A6 mode resonator with Q of 720 in complementarily oriented piezoelectric lithium niobate thin films
  doi: 10.1109/EFTF/IFCS52194.2021.9604327
– volume: 67
  start-page: 2731
  year: 2020
  ident: jmmac288fbib126
  article-title: Low-loss unidirectional acoustic focusing transducer in thin-film lithium niobate
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.3011624
– volume: 55
  start-page: 1984
  year: 2008
  ident: jmmac288fbib123
  article-title: The power flow angle of acoustic waves in thin piezoelectric plates
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.889
– volume: 59
  year: 2020
  ident: jmmac288fbib52
  article-title: High frequency thickness expansion mode bulk acoustic wave resonator using LN single crystal thin plate
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/ab7861
– volume: 27
  start-page: 931
  year: 2018
  ident: jmmac288fbib76
  article-title: RF filters with periodic passbands for sparse Fourier transform-based spectrum sensing
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2864177
– volume: 23
  start-page: 1
  year: 2014
  ident: jmmac288fbib24
  article-title: Lithium niobate on silicon dioxide suspended membranes: a technology platform for engineering the temperature coefficient of frequency of high electromechanical coupling resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2312888
– volume: 26
  start-page: 1204
  year: 2017
  ident: jmmac288fbib132
  article-title: Lithium niobate MEMS chirp compressors for near zero power wake-up radios
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2017.2750176
– volume: 42
  start-page: 2219
  year: 1971
  ident: jmmac288fbib105
  article-title: Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1660528
– volume: 95
  year: 2009
  ident: jmmac288fbib50
  article-title: Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3258496
– start-page: 962
  year: 2017
  ident: jmmac288fbib103
  article-title: Integration of bottom electrode in Y-cut lithium niobate thin films for high electromechanical coupling and high capacitance per unit area MEMS resonators
– volume: 30
  year: 2019
  ident: jmmac288fbib17
  article-title: Frequency-scalable fabrication process flow for lithium niobate based Lamb wave resonators
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/ab5b7b
– start-page: 1239
  year: 2019
  ident: jmmac288fbib71
  article-title: A high velocity and wideband SAW on a thin LiNbO3 plate bonded on a Si substrate in the SHF range
– volume: 33
  start-page: 193
  year: 1985
  ident: jmmac288fbib4
  article-title: Optical fiber delay-line signal processing
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.1985.1132981
– start-page: 1
  year: 2016
  ident: jmmac288fbib68
  article-title: Solidly mounted ladder filter using shear horizontal wave in LiNbO3
– volume: 41
  start-page: 1444
  year: 2020
  ident: jmmac288fbib93
  article-title: Acoustoelectric non-reciprocity in lithium niobate-on-silicon delay lines
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2020.3007062
– volume: 29
  start-page: 236
  year: 2020
  ident: jmmac288fbib78
  article-title: Voltage amplification of radio frequency signals with pitch-asymmetric acoustic delay lines
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.2965519
– volume: 29
  start-page: 1464
  year: 2020
  ident: jmmac288fbib29
  article-title: X-cut lithium niobate-based shear horizontal resonators for radio frequency applications
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.3026167
– volume: 30
  start-page: 632
  year: 2021
  ident: jmmac288fbib118
  article-title: Acoustic loss in thin-film lithium niobate: an experimental study
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2021.3092724
– volume: 29
  start-page: 1412
  year: 2020
  ident: jmmac288fbib91
  article-title: A piezoelectric micromachined ultrasonic transducer using thin-film lithium niobate
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.3026547
– volume: 3
  start-page: 313
  year: 2020
  ident: jmmac288fbib35
  article-title: A1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4%
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.2982775
– volume: 42
  start-page: 438
  year: 2021
  ident: jmmac288fbib72
  article-title: Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO3/SiO2/Si structure
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2021.3051298
– volume: 6
  start-page: 845
  year: 2019
  ident: jmmac288fbib100
  article-title: Lithium niobate piezo-optomechanical crystals
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000845
– year: 2021
  ident: jmmac288fbib139
  article-title: Integrated photonics on thin-film lithium niobate
  doi: 10.1364/AOP.411024
– year: 2019
  ident: jmmac288fbib31
  article-title: Q-enhanced lithium niobate SH0 resonators with optimized acoustic boundaries
  doi: 10.1109/FCS.2019.8856007
– start-page: 1
  year: 2008
  ident: jmmac288fbib65
  article-title: High piezoelectric properties in LiNbO3 transferred layer by the Smart CutTM technology for ultra wide band BAW filter applications
– volume: 28
  start-page: 575
  year: 2019
  ident: jmmac288fbib128
  article-title: 4.5 GHz lithium niobate MEMS filters with 10% fractional bandwidth for 5G front-ends
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2019.2922935
– year: 2014
  ident: jmmac288fbib22
  article-title: Lamb wave micromechanical resonators formed in thin plates of lithium niobate
  doi: 10.31438/trf.hh2014.75
– year: 1988
  ident: jmmac288fbib10
  article-title: IEEE Standard on Piezoelectricity
– volume: 2
  start-page: 212
  year: 2021
  ident: jmmac288fbib54
  article-title: Optimized resonators for piezoelectric power conversion
  publication-title: IEEE Open J. Power Electron.
  doi: 10.1109/OJPEL.2021.3067020
– volume: 29
  start-page: 1455
  year: 2020
  ident: jmmac288fbib18
  article-title: Impact of frequency mismatch on the quality factor of large arrays of X-cut lithium niobate MEMS resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.2965957
– volume: 4
  year: 2017
  ident: jmmac288fbib61
  article-title: Toward high‐quality epitaxial LiNbO3 and LiTaO3 thin films for acoustic and optical applications
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600998
– volume: 24
  start-page: 1
  year: 2014
  ident: jmmac288fbib121
  article-title: Anchor losses in AlN contour mode resonators
  publication-title: J. Microelectromech. Syst.
– start-page: 301
  year: 2010
  ident: jmmac288fbib130
  article-title: Ultra wide band dual orthogonal frequency coded SAW correlators using harmonic operation
– start-page: 512
  year: 2019
  ident: jmmac288fbib42
  article-title: Laterally excited bulk wave resonators (XBARs) based on thin lithium niobate platelet for 5 GHz and 13 GHz filters
– start-page: 873
  year: 2007
  ident: jmmac288fbib51
  article-title: Single crystal FBAR with LiNbO3 and LiTaO3 piezoelectric substance layers
– volume: 67
  start-page: 1379
  year: 2019
  ident: jmmac288fbib81
  article-title: Low-loss and wideband acoustic delay lines
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2019.2900246
– volume: 52
  year: 2019
  ident: jmmac288fbib2
  article-title: The 2019 surface acoustic waves roadmap
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab1b04
– start-page: 1
  year: 2020
  ident: jmmac288fbib95
  article-title: A 3-port circulator based on non-reciprocal acoustoelectric delay lines
– start-page: 568
  year: 2014
  ident: jmmac288fbib28
  article-title: Overmoded shear horizontal wave MEMS resonators using X-cut lithium niobate thin film
– volume: 67
  start-page: 1960
  year: 2020
  ident: jmmac288fbib136
  article-title: Acoustoelectric amplifier with 1.2 dB insertion gain monolithic graphene construction and continuous wave operation
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2984176
– volume: 1
  start-page: 601
  ident: jmmac288fbib1
  article-title: Microwave acoustic devices: recent advances and outlooks
  publication-title: IEEE J. Microwaves.
  doi: 10.1109/JMW.2021.3064825
– start-page: 1
  year: 2018
  ident: jmmac288fbib85
  article-title: S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss
– volume: 67
  start-page: 402
  year: 2020
  ident: jmmac288fbib83
  article-title: GHz broadband SH0 mode lithium niobate acoustic delay lines
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2943355
– start-page: 1
  year: 2018
  ident: jmmac288fbib125
  article-title: Transverse modes in IHP SAW resonator and their suppression method
– volume: vol 2020-September
  start-page: 1
  year: 2020
  ident: jmmac288fbib48
  article-title: Lithium niobate film bulk acoustic wave resonator for sub-6 GHz filters
– start-page: 563
  year: 2012
  ident: jmmac288fbib26
  article-title: Wide band resonators using SH mode of plate wave on LiNbO3
– volume: 40
  start-page: 420
  year: 1969
  ident: jmmac288fbib60
  article-title: The deposition and piezoelectric characteristics of sputtered lithium niobate films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1657074
– volume: 8
  start-page: 477
  year: 2021
  ident: jmmac288fbib140
  article-title: Acousto-optic modulation of a wavelength-scale waveguide
  publication-title: Optica
  doi: 10.1364/OPTICA.413401
– volume: 58
  start-page: SGGC10
  year: 2019
  ident: jmmac288fbib110
  article-title: Ultra-wideband T- and π-type ladder filters using a fundamental shear horizontal mode plate wave in a LiNbO3 plate
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab14d3
– volume: 13
  year: 2020
  ident: jmmac288fbib87
  article-title: Piezoelectric transduction of a wavelength-scale mechanical waveguide
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.024069
– volume: Part F183
  start-page: 23728
  year: 2020
  ident: jmmac288fbib96
  article-title: Integrated lithium niobate acousto-optic frequency shifter
  publication-title: Opt. InfoBase Conf. Pap.
– start-page: 2145
  year: 2009
  ident: jmmac288fbib114
  article-title: PZT transduced high-overtone width-extensional resonators above 1 GHz
– start-page: 967
  year: 2021
  ident: jmmac288fbib38
  article-title: Fabrication and analysis of thin film lithum niobate resonators for 5 GHz frequency and large K t2 applications
– volume: 18
  start-page: 1533
  year: 2006
  ident: jmmac288fbib64
  article-title: Integration of single‐crystal LiNbO3 thin film on silicon by laser irradiation and ion implantation-induced layer transfer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502364
– volume: 114
  year: 2019
  ident: jmmac288fbib138
  article-title: High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5108724
– volume: 57
  start-page: 2564
  year: 2010
  ident: jmmac288fbib44
  article-title: High-frequency lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2010.1722
– volume: 67
  start-page: 402
  year: 2020
  ident: jmmac288fbib133
  article-title: GHz low-loss acoustic RF couplers in lithium niobate thin film
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2943355
– volume: 68
  start-page: 3653
  year: 2020
  ident: jmmac288fbib66
  article-title: Surface acoustic wave devices using lithium niobate on silicon carbide
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2020.3006294
– start-page: 1
  year: 2020
  ident: jmmac288fbib43
  article-title: IDT-based acoustic wave devices using ultrathin lithium niobate and lithium tantalate
– volume: 69
  start-page: 689
  year: 1981
  ident: jmmac288fbib117
  article-title: Attenuation of acoustic waves in lithium niobate
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.385588
– volume: vol 2019-October
  start-page: 84
  year: 2019
  ident: jmmac288fbib120
  article-title: Single-mode high frequency LiNbO3 film bulk acoustic resonator
– volume: 16
  start-page: 46
  year: 2015
  ident: jmmac288fbib3
  article-title: A snapshot in time: the future in filters for cell phones
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMM.2015.2429513
– volume: 53
  start-page: 07KD03
  year: 2014
  ident: jmmac288fbib30
  article-title: Ultra-wideband and high frequency resonators using shear horizontal type plate wave in LiNbO3 thin plate
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.53.07KD03
– volume: 28
  start-page: 209
  year: 2019
  ident: jmmac288fbib11
  article-title: Accurate extraction of large electromechanical coupling in piezoelectric MEMS resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2019.2892708
– volume: 68
  start-page: 5211
  year: 2020
  ident: jmmac288fbib56
  article-title: 10–60 GHz electromechanical resonators using thin-film lithium niobate
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2020.3027694
– start-page: 723
  year: 2018
  ident: jmmac288fbib34
  article-title: A VHF temperature compensated lithium niobate-on-oxide resonator with Q > 3900 for low phase noise oscillators
  publication-title: IEEE Int. Conf. Micro Electro Mech. Syst.
  doi: 10.1109/MEMSYS.2018.8346657
– start-page: 798
  year: 2017
  ident: jmmac288fbib77
  article-title: A high FoM lithium niobate resonant transformer for passive voltage amplification
– volume: 22
  start-page: 418
  year: 1974
  ident: jmmac288fbib102
  article-title: Electrode resistance effects in interdigital transducers
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.1974.1128241
– volume: 30
  start-page: 337
  year: 2021
  ident: jmmac288fbib92
  article-title: A 100 nm thick, 32 kHz X-cut lithium niobate piezoelectric nanoscale ultrasound transducer for airborne ultrasound communication
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2021.3062344
– start-page: 165
  year: 2013
  ident: jmmac288fbib21
  article-title: High k t 2× Q, multi-frequency lithium niobate resonators
SSID ssj0011818
Score 2.5885916
SecondaryResourceType review_article
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 114001
SubjectTerms acoustic devices
electromechanical coupling
frequency scaling
lithium niobate
piezoelectric devices
quality factor
thin-film devices
Title RF acoustic microsystems based on suspended lithium niobate thin films: advances and outlook
URI https://iopscience.iop.org/article/10.1088/1361-6439/ac288f
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB52FUEPvsU3EfTgobutadNUTyIuKvhAFDwIpXnh6ra72Pbir3fS1kVFRLy1MEnDZDoPZuYbgF1faIvsEzk6oMyCartOJKRxhKLCc7VS3LeNwpdX7Ozev3gIHlpwNO6FGY4a1d_BxxoouGZhUxDHux5lnmMNaTeRB5ybNkxSzpgdX3B-fTNOIaDpqtQwuuiOh1ayyVH-tMMXm9TG734yMb05ePw4XF1Z8tIpC9GRb99wG_95-nmYbVxPclyTLkBLZ4sw8wmQcBGmqoJQmS_B422PoLKsZn2R1Fbt1ZjPObF2T5FhRvIyrwboKoKu_FO_TEnWR-1QaIJvGTH9QZofkqbIICdJhqvKYoBe_TLc907vTs6cZhKDI2kYFU5kDIYWCaWSB64rokBIn3nchExoHvhhyAMmDIZzkeJKJkpSbYzvG4yVFPpnjK7ARDbM9CoQw5MwUhimuKH0E4xPUFgSzZlnQtQlJlyD7sddxLKBKbfTMgZxlS7nPLYcjC0H45qDa7A_XjGqITp-od3Di4mb_zT_hW7nC91zmsbUw3DJdnGjcMUjZdb_uNcGTB_YQpiqgXETJorXUm-hJ1OI7Upi3wFQ6-q8
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlA5UF4V2wcYCQ4cspvgPBxuVdsVy1sIJA5IJn6JhU12RZJLf33HiUGAEKrELZHGdjx25qGZ-QZgMxTaIvukno5obEG1fS8V0nhCURH4WikW2kLho-N47yLcv4wuXZ_TphZmPHGiv4uPLVBwy0KXEMd6AY0DzyrSXiZ3GDO9iTJT8BHXohY8f3By-hhGQPXViGI0070ANaWLU742yzO9NIVrP1Ez_c9w_fCBbXbJXbeuRFf-fYHd-I4dLMC8M0HJz5Z8ET7oYgnmngATLsFMkxgqy2W4OusTFJpNzy-S2-y9Fvu5JFb_KTIuSFmXTSNdRdCkvxnWOSmGKCUqTfCtIGY4ystd4pINSpIVOKquRmjdr8BF_8_5rz3PdWTwJE3SykuNQRcjo1SyyPdFGgkZxgEzSSw0i8IkYVEsDLp1qWJKZkpSbUwYGvSZFNppMf0C08W40KtADMuSVKG74icyzNBPwUuTaRYHJkGZYpIO9B7Og0sHV267Zox4EzZnjFsucstF3nKxA9uPIyYtVMcbtFt4ONz9r-UbdBvP6G7znNMA3SZbzY0XjOPJff3PudZh9vR3nx8Ojg--wacdmxvT1DR-h-nqvtY_0LipxFpzgf8BKW_wIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RF+acoustic+microsystems+based+on+suspended+lithium+niobate+thin+films%3A+advances+and+outlook&rft.jtitle=Journal+of+micromechanics+and+microengineering&rft.au=Lu%2C+Ruochen&rft.au=Gong%2C+Songbin&rft.date=2021-11-01&rft.pub=IOP+Publishing&rft.issn=0960-1317&rft.eissn=1361-6439&rft.volume=31&rft.issue=11&rft_id=info:doi/10.1088%2F1361-6439%2Fac288f&rft.externalDocID=jmmac288f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1317&client=summon