RF acoustic microsystems based on suspended lithium niobate thin films: advances and outlook
Saved in:
Published in | Journal of micromechanics and microengineering Vol. 31; no. 11; pp. 114001 - 114013 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-1317 1361-6439 |
DOI | 10.1088/1361-6439/ac288f |
Cover
Loading…
Author | Gong, Songbin Lu, Ruochen |
---|---|
Author_xml | – sequence: 1 givenname: Ruochen orcidid: 0000-0003-0025-3924 surname: Lu fullname: Lu, Ruochen organization: The University of Texas at Austin Department of Electrical and Computer Engineering, Austin, Texas, United States of America – sequence: 2 givenname: Songbin surname: Gong fullname: Gong, Songbin organization: University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering, Champaign, Illinois, United States of America |
BookMark | eNp9kE1LxDAQQIOs4O7q3WOOHqybbNo09SaLq8KCIHoTQpoPzNokpUmF_fe2VDyICgPDDPOGmbcAMx-8BuAcoyuMGFthQnFGc1KthFwzZo7A_Ls1A3NUUZRhgssTsIhxjxDGDLM5eH3aQiFDH5OV0FnZhXiISbsIaxG1gsHD2MdWezUUjU1vtnfQ21CLpOFQeWhs4-I1FOpDeKkjFH6g-tSE8H4Kjo1ooj77ykvwsr193txnu8e7h83NLpOkrFJWGUMQFYRIViBUV0Utc4qZKWmtWZGXJStobdCaVoopKZQk2pg8NxQVimJEyRLQae94fuy04dImkWzwqRO24Rjx0REfhfBRCJ8cDSD6AbaddaI7_IdcTIgNLd-HvvPDZ3zvHCeY4zHyQS5v1Th6-cvon5s_AYZ9iE4 |
CODEN | JMMIEZ |
CitedBy_id | crossref_primary_10_1109_TUFFC_2023_3303123 crossref_primary_10_1364_OL_515879 crossref_primary_10_1109_LMWT_2024_3368354 crossref_primary_10_1109_TMTT_2022_3194723 crossref_primary_10_1063_5_0222394 crossref_primary_10_1109_JMEMS_2023_3321284 crossref_primary_10_1063_5_0190058 crossref_primary_10_1063_5_0106428 crossref_primary_10_1088_1361_6439_ac9289 crossref_primary_10_1109_LED_2022_3230911 crossref_primary_10_3390_mi14071341 crossref_primary_10_1063_5_0094364 crossref_primary_10_1063_5_0204157 crossref_primary_10_1109_JMEMS_2023_3262021 crossref_primary_10_1002_adem_202201837 crossref_primary_10_1109_JMEMS_2024_3431576 crossref_primary_10_1109_LED_2022_3152908 crossref_primary_10_1109_JMEMS_2021_3114627 crossref_primary_10_1109_MMM_2022_3203949 crossref_primary_10_1103_PhysRevApplied_18_054078 crossref_primary_10_1109_LMWT_2023_3301229 crossref_primary_10_3390_mi15040477 crossref_primary_10_1088_1361_6439_ad2f49 crossref_primary_10_1109_LED_2022_3175572 crossref_primary_10_1109_JMEMS_2023_3314666 crossref_primary_10_1002_admi_202300240 crossref_primary_10_1109_TUFFC_2022_3152010 crossref_primary_10_35848_1347_4065_ad1e03 crossref_primary_10_35848_1347_4065_acbc2b crossref_primary_10_1038_s41598_024_57168_x crossref_primary_10_1103_PhysRevApplied_23_024054 crossref_primary_10_1109_ACCESS_2024_3380370 crossref_primary_10_1109_JMEMS_2022_3204449 crossref_primary_10_1038_s44310_024_00052_3 crossref_primary_10_1109_TED_2023_3297561 crossref_primary_10_1002_admi_202202446 crossref_primary_10_1109_JMEMS_2024_3472615 crossref_primary_10_1038_s41928_022_00910_y |
Cites_doi | 10.1109/TMTT.2020.3022942 10.1109/58.896145 10.1155/2013/459767 10.1109/TMTT.2018.2883107 10.1109/TMTT.2018.2890661 10.1364/PRJ.7.001003 10.1109/TUFFC.2020.3049084 10.1109/TED.2013.2281734 10.1109/JMEMS.2021.3062819 10.1109/JMEMS.2020.3007590 10.1063/1.5126428 10.1002/pssa.201000060 10.1364/OPTICA.6.001498 10.1109/TMTT.2012.2228671 10.1109/TUFFC.2019.2916259 10.1109/TMTT.2019.2949808 10.7567/JJAP.52.07HD03 10.1109/TUFFC.2020.2989623 10.1109/MEMSYS.2018.8346485 10.1109/JMEMS.2014.2384916 10.1049/el.2019.1658 10.1109/TMTT.2021.3074918 10.1109/MEMS46641.2020.9056190 10.1109/JMEMS.2019.2961976 10.1109/IUS52206.2021.9593653 10.1109/LED.2020.3030797 10.1049/el.2018.7297 10.1109/IMS19712.2021.9574959 10.1109/JMEMS.2020.2967784 10.1063/5.0034909 10.1109/TUFFC.2020.3048929 10.1364/OE.27.009794 10.1111/j.1551-2916.2012.05155.x 10.1088/1361-6463/aaee59 10.1109/MMM.2015.2431236 10.1109/JMEMS.2018.2847310 10.1007/s11664-001-0067-2 10.1109/TMTT.2019.2895577 10.1109/TUFFC.2020.3035123 10.1109/JMEMS.2019.2934126 10.1016/j.sna.2014.01.033 10.1063/1.5143550 10.1109/TUFFC.2020.2972293 10.1109/EFTF/IFCS52194.2021.9604327 10.1109/TUFFC.2020.3011624 10.1109/TUFFC.889 10.35848/1347-4065/ab7861 10.1109/JMEMS.2018.2864177 10.1109/JMEMS.2014.2312888 10.1109/JMEMS.2017.2750176 10.1063/1.1660528 10.1063/1.3258496 10.1088/1361-6439/ab5b7b 10.1109/TMTT.1985.1132981 10.1109/LED.2020.3007062 10.1109/JMEMS.2020.2965519 10.1109/JMEMS.2020.3026167 10.1109/JMEMS.2021.3092724 10.1109/JMEMS.2020.3026547 10.1109/JMEMS.2020.2982775 10.1109/LED.2021.3051298 10.1364/OPTICA.6.000845 10.1364/AOP.411024 10.1109/FCS.2019.8856007 10.1109/JMEMS.2019.2922935 10.31438/trf.hh2014.75 10.1109/OJPEL.2021.3067020 10.1109/JMEMS.2020.2965957 10.1002/admi.201600998 10.1109/TMTT.2019.2900246 10.1088/1361-6463/ab1b04 10.1109/TUFFC.2020.2984176 10.1109/JMW.2021.3064825 10.1109/TUFFC.2019.2943355 10.1063/1.1657074 10.1364/OPTICA.413401 10.7567/1347-4065/ab14d3 10.1103/PhysRevApplied.13.024069 10.1002/adma.200502364 10.1063/1.5108724 10.1109/TUFFC.2010.1722 10.1109/TMTT.2020.3006294 10.1121/1.385588 10.1109/MMM.2015.2429513 10.7567/JJAP.53.07KD03 10.1109/JMEMS.2019.2892708 10.1109/TMTT.2020.3027694 10.1109/MEMSYS.2018.8346657 10.1109/TMTT.1974.1128241 10.1109/JMEMS.2021.3062344 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd |
Copyright_xml | – notice: 2021 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6439/ac288f |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6439 |
ExternalDocumentID | 10_1088_1361_6439_ac288f jmmac288f |
GroupedDBID | -~X 02O 1JI 1PV 1WK 29L 4.4 5B3 5GY 5PX 5VS 5ZH 5ZI 7.M 7.Q AAGCD AAGCF AAHTB AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ACMRT AEFHF AENEX AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE G8K HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KC5 KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 R4D RIN RKQ RNS RO9 ROL RPA S3P SY9 T37 TN5 UCJ W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c379t-9ff306a33c8500b95bc4618f76be85477856bf0269d8dcadc3eff44f605d61063 |
IEDL.DBID | IOP |
ISSN | 0960-1317 |
IngestDate | Thu Apr 24 23:10:51 EDT 2025 Tue Jul 01 02:48:19 EDT 2025 Wed Aug 21 03:34:51 EDT 2024 Wed Jun 07 11:18:59 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-9ff306a33c8500b95bc4618f76be85477856bf0269d8dcadc3eff44f605d61063 |
Notes | JMM-105424.R1 |
ORCID | 0000-0003-0025-3924 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1088_1361_6439_ac288f crossref_citationtrail_10_1088_1361_6439_ac288f iop_journals_10_1088_1361_6439_ac288f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of micromechanics and microengineering |
PublicationTitleAbbrev | JMM |
PublicationTitleAlternate | J. Micromech. Microeng |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Cai (jmmac288fbib99) 2019; 27 Bousquet (jmmac288fbib48) 2020; vol 2020-September Lu (jmmac288fbib108) 2021 Gong (jmmac288fbib14) 2013; 60 Pijolat (jmmac288fbib62) 2008 Gao (jmmac288fbib127) 2021; 68 Ghosh (jmmac288fbib131) 2018 Pirro (jmmac288fbib75) 2020 Lu (jmmac288fbib94) 2019; 67 Shao (jmmac288fbib96) 2020; Part F183 Tanaka (jmmac288fbib43) 2020 Lu (jmmac288fbib35) 2020; 3 Lu (jmmac288fbib118) 2021; 30 Lu (jmmac288fbib85) 2018 Kourani (jmmac288fbib90) 2021; 68 Manzaneque (jmmac288fbib77) 2017 Lu (jmmac288fbib133) 2020; 67 Colombo (jmmac288fbib79) 2020; 67 Sarabalis (jmmac288fbib140) 2021; 8 Shao (jmmac288fbib97) 2019; 6 Park (jmmac288fbib64) 2006; 18 Jiang (jmmac288fbib100) 2019; 6 Malocha (jmmac288fbib136) 2020; 67 Wang (jmmac288fbib13) 2015; 24 Wollack (jmmac288fbib141) 2021; 118 Lu (jmmac288fbib126) 2020; 67 Yang (jmmac288fbib109) 2017 Siebert (jmmac288fbib122) 1986 Gong (jmmac288fbib16) 2013; 61 Gallagher (jmmac288fbib130) 2010 Chen (jmmac288fbib31) 2019 Yandrapalli (jmmac288fbib38) 2021 Tzu-Hsuan (jmmac288fbib73) 2021; 31 Simeoni (jmmac288fbib92) 2021; 30 Hartmann (jmmac288fbib101) 1989 Aspar (jmmac288fbib63) 2001; 30 Kourani (jmmac288fbib134) 2018 Song (jmmac288fbib27) 2015 Iwamoto (jmmac288fbib125) 2018 Colombo (jmmac288fbib15) 2018; 27 Olsson (jmmac288fbib23) 2014; 209 Kadota (jmmac288fbib46) 2009 Manzaneque (jmmac288fbib81) 2019; 67 Ghosh (jmmac288fbib95) 2020 Bhaskar (jmmac288fbib135) 2018; 52 Li (jmmac288fbib88) 2020; 29 Fang (jmmac288fbib34) 2018 Ruby (jmmac288fbib3) 2015; 16 Su (jmmac288fbib72) 2021; 42 Smith (jmmac288fbib115) 2012; 95 Wang (jmmac288fbib21) 2013 Matsumoto (jmmac288fbib52) 2020; 59 Ghosh (jmmac288fbib137) 2019 Braun (jmmac288fbib54) 2021; 2 Kadota (jmmac288fbib41) 2011; 208 Hashimoto (jmmac288fbib6) 2013 Kadota (jmmac288fbib30) 2014; 53 Lu (jmmac288fbib67) 2021; 69 Sarabalis (jmmac288fbib86) 2020; 127 Yang (jmmac288fbib36) 2020; 29 Kadota (jmmac288fbib68) 2016 Foster (jmmac288fbib60) 1969; 40 Lu (jmmac288fbib83) 2020; 67 Dahmani (jmmac288fbib87) 2020; 13 Ruby (jmmac288fbib9) 2001 Wang (jmmac288fbib20) 2016 Hassanien (jmmac288fbib113) 2021 Solal (jmmac288fbib74) 2002; vol 1 Segovia-fernandez (jmmac288fbib121) 2014; 24 Lu (jmmac288fbib82) 2019; 66 Kimura (jmmac288fbib69) 2019; 67 Lu (jmmac288fbib124) 2021 Jackson (jmmac288fbib4) 1985; 33 Kuznetsova (jmmac288fbib12) 2001; 48 Moulet (jmmac288fbib65) 2008 Bousquet (jmmac288fbib120) 2019; vol 2019-October Turner (jmmac288fbib37) 2019; 55 Warder (jmmac288fbib5) 2015; 16 Faizan (jmmac288fbib33) 2021; 30 Gong (jmmac288fbib28) 2014 Kochhar (jmmac288fbib103) 2017 Zhu (jmmac288fbib139) 2021 Gong (jmmac288fbib107) 2012; vol 1 Kadota (jmmac288fbib110) 2019; 58 Colombo (jmmac288fbib80) 2020 Cai (jmmac288fbib98) 2019; 7 Shi (jmmac288fbib24) 2014; 23 Baron (jmmac288fbib53) 2013; 2013 Lakin (jmmac288fbib102) 1974; 22 Lu (jmmac288fbib84) 2021; 69 Kimura (jmmac288fbib70) 2013; 52 Mansoorzare (jmmac288fbib93) 2020; 41 Kadota (jmmac288fbib26) 2012 Bajak (jmmac288fbib117) 1981; 69 Zhang (jmmac288fbib66) 2020; 68 Schermer (jmmac288fbib116) 2019; 67 Colombo (jmmac288fbib18) 2020; 29 Bousquet (jmmac288fbib47) 2019 Bartasyte (jmmac288fbib61) 2017; 4 Hashimoto (jmmac288fbib8) 2009 Chandrahalim (jmmac288fbib114) 2009 (jmmac288fbib10) 1988 Li (jmmac288fbib25) 2019; 28 Yang (jmmac288fbib57) 2018 Kochhar (jmmac288fbib49) 2018 Osugi (jmmac288fbib51) 2007 Lu (jmmac288fbib91) 2020; 29 Yang (jmmac288fbib39) 2019; vol 2019-January Kourani (jmmac288fbib89) 2020; 67 Vidal-Álvarez (jmmac288fbib78) 2020; 29 Delsing (jmmac288fbib2) 2019; 52 Yang (jmmac288fbib59) 2019 Wang (jmmac288fbib19) 2012 Plessky (jmmac288fbib40) 2018; 55 Olsson (jmmac288fbib22) 2014 Pijolat (jmmac288fbib50) 2009; 95 Lu (jmmac288fbib111) 2020; 68 Ruby (jmmac288fbib7) 2004 Kimura (jmmac288fbib71) 2019 Lu (jmmac288fbib112) 2020 Smith (jmmac288fbib105) 1971; 42 Lu (jmmac288fbib76) 2018; 27 Lu (jmmac288fbib32) 2018 Plessky (jmmac288fbib42) 2019 Bai (jmmac288fbib55) 2020; 10 Kochhar (jmmac288fbib29) 2020; 29 Kadota (jmmac288fbib44) 2010; 57 Yang (jmmac288fbib56) 2020; 68 Yang (jmmac288fbib128) 2019; 28 Yang (jmmac288fbib45) 2021; 68 Manzaneque (jmmac288fbib132) 2017; 26 Lu (jmmac288fbib58) 2020; 29 Lu (jmmac288fbib11) 2019; 28 Faizan (jmmac288fbib17) 2019; 30 Hashimoto (jmmac288fbib106) 2000 Yang (jmmac288fbib119) 2021; 68 Auld (jmmac288fbib104) 1990 Kuznetsova (jmmac288fbib123) 2008; 55 Hackett (jmmac288fbib138) 2019; 114 Gong (jmmac288fbib1); 1 Hsu (jmmac288fbib129) 2020; 41 |
References_xml | – start-page: 201 year: 2008 ident: jmmac288fbib62 article-title: Large Q × f product for HBAR using Smart CutTM transfer of LiNbO3 thin layers onto LiNbO3 substrate – volume: 69 start-page: 541 year: 2021 ident: jmmac288fbib84 article-title: Low-loss 5 GHz first-order antisymmetric mode acoustic delay lines in thin-film lithium niobate publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2020.3022942 – volume: 48 start-page: 322 year: 2001 ident: jmmac288fbib12 article-title: Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.896145 – start-page: 1 year: 2020 ident: jmmac288fbib80 article-title: Zero power X-cut LiNbO3 MEMS-based radio frequency rectifier – start-page: 747 year: 2018 ident: jmmac288fbib32 article-title: Exploiting parallelism in resonators for large voltage gain in low power wake up radio front ends – volume: 2013 year: 2013 ident: jmmac288fbib53 article-title: Wideband lithium niobate FBAR filters publication-title: Int. J. Microw. Sci. Technol. doi: 10.1155/2013/459767 – volume: 67 start-page: 1078 year: 2019 ident: jmmac288fbib116 article-title: Millimeter-wave dielectric properties of highly refractive single crystals characterized by waveguide cavity resonance publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2018.2883107 – volume: 67 start-page: 915 year: 2019 ident: jmmac288fbib69 article-title: Comparative study of acoustic wave devices using thin piezoelectric plates in the 3–5 GHz range publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2018.2890661 – year: 2009 ident: jmmac288fbib8 – volume: 7 start-page: 1003 year: 2019 ident: jmmac288fbib98 article-title: Acousto-optical modulation of thin film lithium niobate waveguide devices publication-title: Photonics Res. doi: 10.1364/PRJ.7.001003 – volume: 68 start-page: 1930 year: 2021 ident: jmmac288fbib45 article-title: Lateral spurious mode suppression in lithium niobate A1 resonators publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.3049084 – volume: 60 start-page: 3888 year: 2013 ident: jmmac288fbib14 article-title: Figure-of-merit enhancement for laterally vibrating lithium niobate mems resonators publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2013.2281734 – volume: 30 start-page: 369 year: 2021 ident: jmmac288fbib33 article-title: Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2021.3062819 – volume: vol 2019-January start-page: 875 year: 2019 ident: jmmac288fbib39 article-title: A 1.65 GHz lithium niobate A1 resonator with electromechanical coupling of 14% and Q of 3112 – volume: 29 start-page: 1332 year: 2020 ident: jmmac288fbib58 article-title: Enabling higher order lamb wave acoustic devices with complementarily oriented piezoelectric thin films publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.3007590 – volume: 127 year: 2020 ident: jmmac288fbib86 article-title: S-band delay lines in suspended lithium niobate publication-title: J. Appl. Phys. doi: 10.1063/1.5126428 – volume: 208 start-page: 1068 year: 2011 ident: jmmac288fbib41 article-title: LiNbO3 thin film for A1 mode of Lamb wave resonators publication-title: Phys. Status Solidi Appl. Mater. Sci. doi: 10.1002/pssa.201000060 – volume: 6 start-page: 1498 year: 2019 ident: jmmac288fbib97 article-title: Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators publication-title: Optica doi: 10.1364/OPTICA.6.001498 – start-page: 813 year: 2001 ident: jmmac288fbib9 article-title: Thin film bulk wave acoustic resonators (FBAR) for wireless applications – start-page: 333 year: 2009 ident: jmmac288fbib46 article-title: 4.5 GHz Lamb wave device composed of LiNbO3 thin film – start-page: 84 year: 2019 ident: jmmac288fbib47 article-title: Single-mode high frequency LiNbO3 film bulk acoustic resonator – volume: 61 start-page: 403 year: 2013 ident: jmmac288fbib16 article-title: Design and analysis of lithium–niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2012.2228671 – year: 1986 ident: jmmac288fbib122 – volume: 66 start-page: 1373 year: 2019 ident: jmmac288fbib82 article-title: Gigahertz low-loss and wide-band S0 mode lithium niobate acoustic delay lines publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2916259 – volume: vol 1 start-page: 2 year: 2012 ident: jmmac288fbib107 article-title: High electromechanical coupling MEMS resonators at 530 MHz using ion sliced X-cut LiNbO3 thin film – volume: 68 start-page: 573 year: 2020 ident: jmmac288fbib111 article-title: 5 GHz antisymmetric mode acoustic delay lines in lithium niobate thin film publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2019.2949808 – volume: 52 start-page: 07HD03 year: 2013 ident: jmmac288fbib70 article-title: S0 mode lamb wave resonators using LiNbO3 thin plate on acoustic multilayer reflector publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.07HD03 – year: 2000 ident: jmmac288fbib106 – year: 2013 ident: jmmac288fbib6 – volume: 67 start-page: 1854 year: 2020 ident: jmmac288fbib89 article-title: A wideband oscillator exploiting multiple resonances in lithium niobate MEMS resonator publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2989623 – year: 2018 ident: jmmac288fbib49 article-title: Top electrode shaping for harnessing high coupling in thickness shear mode resonators in Y-cut lithium niobate thin films doi: 10.1109/MEMSYS.2018.8346485 – start-page: p 5 year: 2004 ident: jmmac288fbib7 article-title: FBAR—from technology development to production – volume: 24 start-page: 300 year: 2015 ident: jmmac288fbib13 article-title: Design and fabrication of S0 Lamb-wave thin-film lithium niobate micromechanical resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2014.2384916 – volume: 68 start-page: 1930 year: 2021 ident: jmmac288fbib119 article-title: Lateral spurious mode suppression in lithium niobate A1 resonators publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.3049084 – volume: 55 start-page: 942 year: 2019 ident: jmmac288fbib37 article-title: 5 GHz band n79 wideband microacoustic filter using thin lithium niobate membrane publication-title: Electron. Lett. doi: 10.1049/el.2019.1658 – start-page: 1 year: 2018 ident: jmmac288fbib131 article-title: SAW correlators in LiNbO3 and GaN on sapphire – volume: 69 start-page: 3246 year: 2021 ident: jmmac288fbib67 article-title: GHz low-loss and high power handling acoustic delay lines using thin-film lithium niobate on sapphire publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2021.3074918 – start-page: 679 year: 2016 ident: jmmac288fbib20 article-title: Multi-frequency LiNbO3 Lamb wave resonators with <3 Ω impedance – year: 2020 ident: jmmac288fbib112 article-title: 8.5 GHz and 11.5 GHz acoustic delay lines using higher-order Lamb modes in lithium niobate thin film doi: 10.1109/MEMS46641.2020.9056190 – start-page: 1 year: 2018 ident: jmmac288fbib57 article-title: Toward Ka band acoustics: lithium niobate asymmetrical mode piezoelectric MEMS resonators – volume: vol 1 start-page: 131 year: 2002 ident: jmmac288fbib74 article-title: Oriented lithium niobate layers transferred on 4″ (100) silicon wafer for RF SAW devices – year: 2019 ident: jmmac288fbib59 article-title: Scaling acoustic filters towards 5G – volume: 29 start-page: 129 year: 2020 ident: jmmac288fbib88 article-title: Low phase noise RF oscillators based on thin-film lithium niobate acoustic delay lines publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2019.2961976 – year: 2021 ident: jmmac288fbib124 article-title: Power flow angles of GHz propagating acoustic waves in thin-film lithium niobate doi: 10.1109/IUS52206.2021.9593653 – volume: 41 start-page: 1825 year: 2020 ident: jmmac288fbib129 article-title: Large coupling acoustic wave resonators based on LiNbO3/SiO2/Si functional substrate publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2020.3030797 – start-page: 303 year: 2012 ident: jmmac288fbib19 article-title: Thin-film lithium niobate contour-mode resonators – volume: 55 start-page: 98 year: 2018 ident: jmmac288fbib40 article-title: 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate publication-title: Electron. Lett. doi: 10.1049/el.2018.7297 – year: 2021 ident: jmmac288fbib113 article-title: Near zero TCF acoustic resonator with high electromechanical coupling of 13.5% at 3.5 GHz doi: 10.1109/IMS19712.2021.9574959 – volume: 29 start-page: 135 year: 2020 ident: jmmac288fbib36 article-title: High Q antisymmetric mode lithium niobate MEMS resonators with spurious mitigation publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.2967784 – volume: 118 year: 2021 ident: jmmac288fbib141 article-title: Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature publication-title: Appl. Phys. Lett. doi: 10.1063/5.0034909 – volume: 68 start-page: 1994 year: 2021 ident: jmmac288fbib90 article-title: An L- and X-band dual frequency synthesizer utilizing lithium niobate RF-MEMS and open loop frequency dividers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.3048929 – volume: 27 start-page: 9794 year: 2019 ident: jmmac288fbib99 article-title: Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications publication-title: Opt. Express doi: 10.1364/OE.27.009794 – volume: 95 start-page: 1777 year: 2012 ident: jmmac288fbib115 article-title: PZT-based piezoelectric MEMS technology publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05155.x – volume: 52 start-page: 05LT01 year: 2018 ident: jmmac288fbib135 article-title: Silicon acoustoelectronics with thin film lithium niobate publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aaee59 – start-page: 942 year: 2017 ident: jmmac288fbib109 article-title: 5 GHz lithium niobate MEMS resonators with high FoM of 153 – volume: 16 start-page: 60 year: 2015 ident: jmmac288fbib5 article-title: Golden age for filter design: innovative and proven approaches for acoustic filter, duplexer, and multiplexer design publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2015.2431236 – volume: 27 start-page: 602 year: 2018 ident: jmmac288fbib15 article-title: X-cut lithium niobate laterally vibrating MEMS resonator with figure of merit of 1560 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2847310 – volume: 30 start-page: 834 year: 2001 ident: jmmac288fbib63 article-title: The generic nature of the Smart-Cut® process for thin film transfer publication-title: J. Electron. Mater. doi: 10.1007/s11664-001-0067-2 – volume: 67 start-page: 1516 year: 2019 ident: jmmac288fbib94 article-title: A radio frequency nonreciprocal network based on switched acoustic delay lines publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2019.2895577 – start-page: 79 year: 1989 ident: jmmac288fbib101 article-title: Overview of design challenges for single phase unidirectional SAW filters – year: 1990 ident: jmmac288fbib104 – volume: 68 start-page: 1408 year: 2021 ident: jmmac288fbib127 article-title: Wideband hybrid monolithic lithium niobate acoustic filter in the K-band publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.3035123 – volume: 28 start-page: 799 year: 2019 ident: jmmac288fbib25 article-title: Temperature stability analysis of thin-film lithium niobate SH0 plate wave resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2019.2934126 – start-page: 1 year: 2020 ident: jmmac288fbib75 article-title: X-cut LiNbO3 coupled resonators for narrow-band filtering applications – start-page: 567 year: 2018 ident: jmmac288fbib134 article-title: A 175 MHz 72 μW voltage controlled oscillator with 1.4% tuning range based on lithium niobate MEMS resonator and 65 nm CMOS – start-page: 535 year: 2019 ident: jmmac288fbib137 article-title: FDSOI on lithium niobate using Al2O3 wafer-bonding for acoustoelectric RF microdevices – volume: 209 start-page: 183 year: 2014 ident: jmmac288fbib23 article-title: A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication publication-title: Sens. Actuators A doi: 10.1016/j.sna.2014.01.033 – volume: 10 year: 2020 ident: jmmac288fbib55 article-title: The thin film bulk acoustic wave resonator based on single-crystalline 43° Y-cut lithium niobate thin films publication-title: AIP Adv. doi: 10.1063/1.5143550 – volume: 31 year: 2021 ident: jmmac288fbib73 article-title: Thin-film lithium niobate-on-insulator (LNOI) shear horizontal surface acoustic wave resonators publication-title: J. Micromech. Microeng. – volume: 67 start-page: 1392 year: 2020 ident: jmmac288fbib79 article-title: High figure of merit X-cut lithium niobate MEMS resonators operating around 50 MHz for large passive voltage amplification in radio frequency applications publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2972293 – start-page: 15 year: 2015 ident: jmmac288fbib27 article-title: Spurious mode suppression in SH0 lithium niobate laterally vibrating MEMS resonators – year: 2021 ident: jmmac288fbib108 article-title: A 15.8 GHz A6 mode resonator with Q of 720 in complementarily oriented piezoelectric lithium niobate thin films doi: 10.1109/EFTF/IFCS52194.2021.9604327 – volume: 67 start-page: 2731 year: 2020 ident: jmmac288fbib126 article-title: Low-loss unidirectional acoustic focusing transducer in thin-film lithium niobate publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.3011624 – volume: 55 start-page: 1984 year: 2008 ident: jmmac288fbib123 article-title: The power flow angle of acoustic waves in thin piezoelectric plates publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.889 – volume: 59 year: 2020 ident: jmmac288fbib52 article-title: High frequency thickness expansion mode bulk acoustic wave resonator using LN single crystal thin plate publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ab7861 – volume: 27 start-page: 931 year: 2018 ident: jmmac288fbib76 article-title: RF filters with periodic passbands for sparse Fourier transform-based spectrum sensing publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2864177 – volume: 23 start-page: 1 year: 2014 ident: jmmac288fbib24 article-title: Lithium niobate on silicon dioxide suspended membranes: a technology platform for engineering the temperature coefficient of frequency of high electromechanical coupling resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2014.2312888 – volume: 26 start-page: 1204 year: 2017 ident: jmmac288fbib132 article-title: Lithium niobate MEMS chirp compressors for near zero power wake-up radios publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2017.2750176 – volume: 42 start-page: 2219 year: 1971 ident: jmmac288fbib105 article-title: Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate publication-title: J. Appl. Phys. doi: 10.1063/1.1660528 – volume: 95 year: 2009 ident: jmmac288fbib50 article-title: Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer publication-title: Appl. Phys. Lett. doi: 10.1063/1.3258496 – start-page: 962 year: 2017 ident: jmmac288fbib103 article-title: Integration of bottom electrode in Y-cut lithium niobate thin films for high electromechanical coupling and high capacitance per unit area MEMS resonators – volume: 30 year: 2019 ident: jmmac288fbib17 article-title: Frequency-scalable fabrication process flow for lithium niobate based Lamb wave resonators publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/ab5b7b – start-page: 1239 year: 2019 ident: jmmac288fbib71 article-title: A high velocity and wideband SAW on a thin LiNbO3 plate bonded on a Si substrate in the SHF range – volume: 33 start-page: 193 year: 1985 ident: jmmac288fbib4 article-title: Optical fiber delay-line signal processing publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.1985.1132981 – start-page: 1 year: 2016 ident: jmmac288fbib68 article-title: Solidly mounted ladder filter using shear horizontal wave in LiNbO3 – volume: 41 start-page: 1444 year: 2020 ident: jmmac288fbib93 article-title: Acoustoelectric non-reciprocity in lithium niobate-on-silicon delay lines publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2020.3007062 – volume: 29 start-page: 236 year: 2020 ident: jmmac288fbib78 article-title: Voltage amplification of radio frequency signals with pitch-asymmetric acoustic delay lines publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.2965519 – volume: 29 start-page: 1464 year: 2020 ident: jmmac288fbib29 article-title: X-cut lithium niobate-based shear horizontal resonators for radio frequency applications publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.3026167 – volume: 30 start-page: 632 year: 2021 ident: jmmac288fbib118 article-title: Acoustic loss in thin-film lithium niobate: an experimental study publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2021.3092724 – volume: 29 start-page: 1412 year: 2020 ident: jmmac288fbib91 article-title: A piezoelectric micromachined ultrasonic transducer using thin-film lithium niobate publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.3026547 – volume: 3 start-page: 313 year: 2020 ident: jmmac288fbib35 article-title: A1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4% publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.2982775 – volume: 42 start-page: 438 year: 2021 ident: jmmac288fbib72 article-title: Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO3/SiO2/Si structure publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2021.3051298 – volume: 6 start-page: 845 year: 2019 ident: jmmac288fbib100 article-title: Lithium niobate piezo-optomechanical crystals publication-title: Optica doi: 10.1364/OPTICA.6.000845 – year: 2021 ident: jmmac288fbib139 article-title: Integrated photonics on thin-film lithium niobate doi: 10.1364/AOP.411024 – year: 2019 ident: jmmac288fbib31 article-title: Q-enhanced lithium niobate SH0 resonators with optimized acoustic boundaries doi: 10.1109/FCS.2019.8856007 – start-page: 1 year: 2008 ident: jmmac288fbib65 article-title: High piezoelectric properties in LiNbO3 transferred layer by the Smart CutTM technology for ultra wide band BAW filter applications – volume: 28 start-page: 575 year: 2019 ident: jmmac288fbib128 article-title: 4.5 GHz lithium niobate MEMS filters with 10% fractional bandwidth for 5G front-ends publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2019.2922935 – year: 2014 ident: jmmac288fbib22 article-title: Lamb wave micromechanical resonators formed in thin plates of lithium niobate doi: 10.31438/trf.hh2014.75 – year: 1988 ident: jmmac288fbib10 article-title: IEEE Standard on Piezoelectricity – volume: 2 start-page: 212 year: 2021 ident: jmmac288fbib54 article-title: Optimized resonators for piezoelectric power conversion publication-title: IEEE Open J. Power Electron. doi: 10.1109/OJPEL.2021.3067020 – volume: 29 start-page: 1455 year: 2020 ident: jmmac288fbib18 article-title: Impact of frequency mismatch on the quality factor of large arrays of X-cut lithium niobate MEMS resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.2965957 – volume: 4 year: 2017 ident: jmmac288fbib61 article-title: Toward high‐quality epitaxial LiNbO3 and LiTaO3 thin films for acoustic and optical applications publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600998 – volume: 24 start-page: 1 year: 2014 ident: jmmac288fbib121 article-title: Anchor losses in AlN contour mode resonators publication-title: J. Microelectromech. Syst. – start-page: 301 year: 2010 ident: jmmac288fbib130 article-title: Ultra wide band dual orthogonal frequency coded SAW correlators using harmonic operation – start-page: 512 year: 2019 ident: jmmac288fbib42 article-title: Laterally excited bulk wave resonators (XBARs) based on thin lithium niobate platelet for 5 GHz and 13 GHz filters – start-page: 873 year: 2007 ident: jmmac288fbib51 article-title: Single crystal FBAR with LiNbO3 and LiTaO3 piezoelectric substance layers – volume: 67 start-page: 1379 year: 2019 ident: jmmac288fbib81 article-title: Low-loss and wideband acoustic delay lines publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2019.2900246 – volume: 52 year: 2019 ident: jmmac288fbib2 article-title: The 2019 surface acoustic waves roadmap publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab1b04 – start-page: 1 year: 2020 ident: jmmac288fbib95 article-title: A 3-port circulator based on non-reciprocal acoustoelectric delay lines – start-page: 568 year: 2014 ident: jmmac288fbib28 article-title: Overmoded shear horizontal wave MEMS resonators using X-cut lithium niobate thin film – volume: 67 start-page: 1960 year: 2020 ident: jmmac288fbib136 article-title: Acoustoelectric amplifier with 1.2 dB insertion gain monolithic graphene construction and continuous wave operation publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2984176 – volume: 1 start-page: 601 ident: jmmac288fbib1 article-title: Microwave acoustic devices: recent advances and outlooks publication-title: IEEE J. Microwaves. doi: 10.1109/JMW.2021.3064825 – start-page: 1 year: 2018 ident: jmmac288fbib85 article-title: S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss – volume: 67 start-page: 402 year: 2020 ident: jmmac288fbib83 article-title: GHz broadband SH0 mode lithium niobate acoustic delay lines publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2943355 – start-page: 1 year: 2018 ident: jmmac288fbib125 article-title: Transverse modes in IHP SAW resonator and their suppression method – volume: vol 2020-September start-page: 1 year: 2020 ident: jmmac288fbib48 article-title: Lithium niobate film bulk acoustic wave resonator for sub-6 GHz filters – start-page: 563 year: 2012 ident: jmmac288fbib26 article-title: Wide band resonators using SH mode of plate wave on LiNbO3 – volume: 40 start-page: 420 year: 1969 ident: jmmac288fbib60 article-title: The deposition and piezoelectric characteristics of sputtered lithium niobate films publication-title: J. Appl. Phys. doi: 10.1063/1.1657074 – volume: 8 start-page: 477 year: 2021 ident: jmmac288fbib140 article-title: Acousto-optic modulation of a wavelength-scale waveguide publication-title: Optica doi: 10.1364/OPTICA.413401 – volume: 58 start-page: SGGC10 year: 2019 ident: jmmac288fbib110 article-title: Ultra-wideband T- and π-type ladder filters using a fundamental shear horizontal mode plate wave in a LiNbO3 plate publication-title: Jpn. J. Appl. Phys. doi: 10.7567/1347-4065/ab14d3 – volume: 13 year: 2020 ident: jmmac288fbib87 article-title: Piezoelectric transduction of a wavelength-scale mechanical waveguide publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.024069 – volume: Part F183 start-page: 23728 year: 2020 ident: jmmac288fbib96 article-title: Integrated lithium niobate acousto-optic frequency shifter publication-title: Opt. InfoBase Conf. Pap. – start-page: 2145 year: 2009 ident: jmmac288fbib114 article-title: PZT transduced high-overtone width-extensional resonators above 1 GHz – start-page: 967 year: 2021 ident: jmmac288fbib38 article-title: Fabrication and analysis of thin film lithum niobate resonators for 5 GHz frequency and large K t2 applications – volume: 18 start-page: 1533 year: 2006 ident: jmmac288fbib64 article-title: Integration of single‐crystal LiNbO3 thin film on silicon by laser irradiation and ion implantation-induced layer transfer publication-title: Adv. Mater. doi: 10.1002/adma.200502364 – volume: 114 year: 2019 ident: jmmac288fbib138 article-title: High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure publication-title: Appl. Phys. Lett. doi: 10.1063/1.5108724 – volume: 57 start-page: 2564 year: 2010 ident: jmmac288fbib44 article-title: High-frequency lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2010.1722 – volume: 67 start-page: 402 year: 2020 ident: jmmac288fbib133 article-title: GHz low-loss acoustic RF couplers in lithium niobate thin film publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2943355 – volume: 68 start-page: 3653 year: 2020 ident: jmmac288fbib66 article-title: Surface acoustic wave devices using lithium niobate on silicon carbide publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2020.3006294 – start-page: 1 year: 2020 ident: jmmac288fbib43 article-title: IDT-based acoustic wave devices using ultrathin lithium niobate and lithium tantalate – volume: 69 start-page: 689 year: 1981 ident: jmmac288fbib117 article-title: Attenuation of acoustic waves in lithium niobate publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.385588 – volume: vol 2019-October start-page: 84 year: 2019 ident: jmmac288fbib120 article-title: Single-mode high frequency LiNbO3 film bulk acoustic resonator – volume: 16 start-page: 46 year: 2015 ident: jmmac288fbib3 article-title: A snapshot in time: the future in filters for cell phones publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2015.2429513 – volume: 53 start-page: 07KD03 year: 2014 ident: jmmac288fbib30 article-title: Ultra-wideband and high frequency resonators using shear horizontal type plate wave in LiNbO3 thin plate publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.53.07KD03 – volume: 28 start-page: 209 year: 2019 ident: jmmac288fbib11 article-title: Accurate extraction of large electromechanical coupling in piezoelectric MEMS resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2019.2892708 – volume: 68 start-page: 5211 year: 2020 ident: jmmac288fbib56 article-title: 10–60 GHz electromechanical resonators using thin-film lithium niobate publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2020.3027694 – start-page: 723 year: 2018 ident: jmmac288fbib34 article-title: A VHF temperature compensated lithium niobate-on-oxide resonator with Q > 3900 for low phase noise oscillators publication-title: IEEE Int. Conf. Micro Electro Mech. Syst. doi: 10.1109/MEMSYS.2018.8346657 – start-page: 798 year: 2017 ident: jmmac288fbib77 article-title: A high FoM lithium niobate resonant transformer for passive voltage amplification – volume: 22 start-page: 418 year: 1974 ident: jmmac288fbib102 article-title: Electrode resistance effects in interdigital transducers publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.1974.1128241 – volume: 30 start-page: 337 year: 2021 ident: jmmac288fbib92 article-title: A 100 nm thick, 32 kHz X-cut lithium niobate piezoelectric nanoscale ultrasound transducer for airborne ultrasound communication publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2021.3062344 – start-page: 165 year: 2013 ident: jmmac288fbib21 article-title: High k t 2× Q, multi-frequency lithium niobate resonators |
SSID | ssj0011818 |
Score | 2.5885916 |
SecondaryResourceType | review_article |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114001 |
SubjectTerms | acoustic devices electromechanical coupling frequency scaling lithium niobate piezoelectric devices quality factor thin-film devices |
Title | RF acoustic microsystems based on suspended lithium niobate thin films: advances and outlook |
URI | https://iopscience.iop.org/article/10.1088/1361-6439/ac288f |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB52FUEPvsU3EfTgobutadNUTyIuKvhAFDwIpXnh6ra72Pbir3fS1kVFRLy1MEnDZDoPZuYbgF1faIvsEzk6oMyCartOJKRxhKLCc7VS3LeNwpdX7Ozev3gIHlpwNO6FGY4a1d_BxxoouGZhUxDHux5lnmMNaTeRB5ybNkxSzpgdX3B-fTNOIaDpqtQwuuiOh1ayyVH-tMMXm9TG734yMb05ePw4XF1Z8tIpC9GRb99wG_95-nmYbVxPclyTLkBLZ4sw8wmQcBGmqoJQmS_B422PoLKsZn2R1Fbt1ZjPObF2T5FhRvIyrwboKoKu_FO_TEnWR-1QaIJvGTH9QZofkqbIICdJhqvKYoBe_TLc907vTs6cZhKDI2kYFU5kDIYWCaWSB64rokBIn3nchExoHvhhyAMmDIZzkeJKJkpSbYzvG4yVFPpnjK7ARDbM9CoQw5MwUhimuKH0E4xPUFgSzZlnQtQlJlyD7sddxLKBKbfTMgZxlS7nPLYcjC0H45qDa7A_XjGqITp-od3Di4mb_zT_hW7nC91zmsbUw3DJdnGjcMUjZdb_uNcGTB_YQpiqgXETJorXUm-hJ1OI7Upi3wFQ6-q8 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlA5UF4V2wcYCQ4cspvgPBxuVdsVy1sIJA5IJn6JhU12RZJLf33HiUGAEKrELZHGdjx25qGZ-QZgMxTaIvukno5obEG1fS8V0nhCURH4WikW2kLho-N47yLcv4wuXZ_TphZmPHGiv4uPLVBwy0KXEMd6AY0DzyrSXiZ3GDO9iTJT8BHXohY8f3By-hhGQPXViGI0070ANaWLU742yzO9NIVrP1Ez_c9w_fCBbXbJXbeuRFf-fYHd-I4dLMC8M0HJz5Z8ET7oYgnmngATLsFMkxgqy2W4OusTFJpNzy-S2-y9Fvu5JFb_KTIuSFmXTSNdRdCkvxnWOSmGKCUqTfCtIGY4ystd4pINSpIVOKquRmjdr8BF_8_5rz3PdWTwJE3SykuNQRcjo1SyyPdFGgkZxgEzSSw0i8IkYVEsDLp1qWJKZkpSbUwYGvSZFNppMf0C08W40KtADMuSVKG74icyzNBPwUuTaRYHJkGZYpIO9B7Og0sHV267Zox4EzZnjFsucstF3nKxA9uPIyYtVMcbtFt4ONz9r-UbdBvP6G7znNMA3SZbzY0XjOPJff3PudZh9vR3nx8Ojg--wacdmxvT1DR-h-nqvtY_0LipxFpzgf8BKW_wIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RF+acoustic+microsystems+based+on+suspended+lithium+niobate+thin+films%3A+advances+and+outlook&rft.jtitle=Journal+of+micromechanics+and+microengineering&rft.au=Lu%2C+Ruochen&rft.au=Gong%2C+Songbin&rft.date=2021-11-01&rft.pub=IOP+Publishing&rft.issn=0960-1317&rft.eissn=1361-6439&rft.volume=31&rft.issue=11&rft_id=info:doi/10.1088%2F1361-6439%2Fac288f&rft.externalDocID=jmmac288f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1317&client=summon |