Rope-Hook Recovery Controller Designed for a Flying-Wing UAV

Due to the complexity of landing environments, precision guidance and high-precision control technology have become key to the rope-hook recovery of shipborne unmanned aerial vehicles (UAVs). The recovery process was divided into three stages and a reasonable guidance strategy had been designed for...

Full description

Saved in:
Bibliographic Details
Published inAerospace Vol. 8; no. 12; p. 384
Main Authors Deng, Zhao, Bing, Fuqiang, Guo, Zhiming, Wu, Liaoni
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the complexity of landing environments, precision guidance and high-precision control technology have become key to the rope-hook recovery of shipborne unmanned aerial vehicles (UAVs). The recovery process was divided into three stages and a reasonable guidance strategy had been designed for them, respectively. This study separated the guidance and control issues into an outer guidance loop and an inner control loop. The inner loop (attitude control loop) controled the UAV to follow the acceleration commands generated by the outer loop (trajectory tracking loop). The inner loop of the longitudinal controller and the lateral controller were designed based on active disturbance rejection control (ADRC), which has strong anti-interference ability. In the last phase, the outer loop of the longitudinal controller switched from a total energy control system (TECS), which greatly decoupled the altitude channel and speed channel, to the proportional navigation (PN) guidance law, while the outer loop of lateral controller switches from the proportional control law based on the L1 guidance law, which can reduce the tracking error and deviation, to the PN guidance law, which considerably enhances the tracking precision. Finally, the simulation data and flight test data show that the controller has strong robustness and good tracking precision, which ensures safe rope-hook recovery.
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace8120384