Comparison of content-based music recommendation using different distance estimation methods

With rapid growth in the online music market, music recommendation has become an active research area. In most current approaches, content-based recommendation methods play an important role. Estimation of similarity between music content is the key to these approaches. A distance formula is used to...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 38; no. 2; pp. 160 - 174
Main Author Liu, Ning-Han
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2013
Kluwer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With rapid growth in the online music market, music recommendation has become an active research area. In most current approaches, content-based recommendation methods play an important role. Estimation of similarity between music content is the key to these approaches. A distance formula is used to calculate the music distance measure, and music recommendations are provided based on this measure. However, people have their own unique tastes in music. This paper proposes a method to calculate a personalized distance measure between different pieces of music based on user preferences. These methods utilize a randomized algorithm, a genetic algorithm, and genetic programming. The first two methods are based on Euclidean distance calculation, where the weight of each music feature in the distance calculation approximates user perception. The third method is not limited to Euclidean distance calculation. It generates a more complex distance function to estimate a user’s music preferences. Experiments were conducted to compare the distance functions calculated by the three methods, and to compare and evaluate their performance in music recommendation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-012-0363-y