Spin-Crossover 2-D Hofmann Frameworks Incorporating an Amide-Functionalized Ligand: N-(pyridin-4-yl)benzamide

Two analogous 2-D Hofmann-type frameworks, which incorporate the novel ligand N-(pyridin-4-yl)benzamide (benpy) [FeII(benpy)2M(CN)4]·2H2O (M = Pd (Pd(benpy)) and Pt (Pt(benpy))) are reported. The benpy ligand was explored to facilitate spin-crossover (SCO) cooperativity via amide group hydrogen bond...

Full description

Saved in:
Bibliographic Details
Published inChemistry an international journal Vol. 3; no. 1; pp. 360 - 372
Main Authors Ong, Xandria, Ahmed, Manan, Xu, Luonan, Brennan, Ashley T., Hua, Carol, Zenere, Katrina A., Xie, Zixi, Kepert, Cameron J., Powell, Benjamin J., Neville, Suzanne M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two analogous 2-D Hofmann-type frameworks, which incorporate the novel ligand N-(pyridin-4-yl)benzamide (benpy) [FeII(benpy)2M(CN)4]·2H2O (M = Pd (Pd(benpy)) and Pt (Pt(benpy))) are reported. The benpy ligand was explored to facilitate spin-crossover (SCO) cooperativity via amide group hydrogen bonding. Structural analyses of the 2-D Hofmann frameworks revealed benpy-guest hydrogen bonding and benpy-benpy aromatic contacts. Both analogues exhibited single-step hysteretic spin-crossover (SCO) transitions, with the metal-cyanide linker (M = Pd or Pt) impacting the SCO spin-state transition temperature and hysteresis loop width (Pd(benpy): T½↓↑: 201, 218 K, ∆T: 17 K and Pt(benpy): T½↓↑: 206, 226 K, ∆T: 20 K). The parallel structural and SCO changes over the high-spin to low-spin transition were investigated using variable-temperature, single-crystal, and powder X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry. These studies indicated that the ligand–guest interactions facilitated by the amide group acted to support the cooperative spin-state transitions displayed by these two Hofmann-type frameworks, providing further insight into cooperativity and structure–property relationships.
ISSN:2624-8549
2624-8549
DOI:10.3390/chemistry3010026