Dynamic stability improvement of an integrated offshore wind and marine-current farm using a flywheel energy-storage system

This study presents a control scheme using a flywheel energy-storage system (FESS) to simultaneously achieve power-fluctuation mitigation and dynamic-stability enhancement of an offshore wind farm (OWF) and marine-current farm (MCF) connected to a power grid. The performance of the studied OWF is si...

Full description

Saved in:
Bibliographic Details
Published inIET renewable power generation Vol. 5; no. 5; pp. 387 - 396
Main Authors Wang, L., Yu, J.-Y., Chen, Y.-T.
Format Journal Article
LanguageEnglish
Published Stevenage The Institution of Engineering & Technology 01.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study presents a control scheme using a flywheel energy-storage system (FESS) to simultaneously achieve power-fluctuation mitigation and dynamic-stability enhancement of an offshore wind farm (OWF) and marine-current farm (MCF) connected to a power grid. The performance of the studied OWF is simulated by an equivalent aggregated 80-MW doubly-fed induction generator (DFIG), while the characteristics of the studied MCF are simulated by an equivalent aggregated 40-MW squirrel-cage induction generator. A proportional-integral-derivative (PID) damping controller of the proposed FESS which is connected to the common AC bus of the OWF and MCF is designed by using modal control theory to contribute effective damping characteristics to the studied OWF and MCF under different operating conditions. A frequency-domain approach based on a linearised system model using eigenvalue analysis is performed. A time-domain scheme based on a non-linear system model subject to disturbance conditions is also carried out. It can be concluded from the simulation results that the proposed FESS combined with the designed PID damping controller can effectively stabilise the studied OWF and MCF under various disturbance conditions. The inherent power fluctuations injected to the power grid can also be effectively mitigated by the proposed control scheme.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1752-1416
1752-1424
DOI:10.1049/iet-rpg.2010.0194